MIXING RANK-ONE ACTIONS FOR INFINITE SUMS OF FINITE GROUPS

BY

ALEXANDRE I. DANILENKO*

Institute for Low Temperature Physics & Engineering of Ukrainian National Academy of Sciences 47 Lenin Ave., Kharkov, 61164, Ukraine e-mail: danilenko@ilt.kharkov.ua

ABSTRACT

Let G be a countable direct sum of finite groups. We construct an uncountable family of pairwise disjoint mixing (of any order) rank-one strictly ergodic free actions of G on a Cantor set. All of them possess the property of minimal self-joinings (of any order). Moreover, an example of rigid weakly mixing rank-one strictly ergodic free G-action is given.

0. Introduction and definitions

This paper was inspired by the following question of D. Rudolph:

QUESTION: Which countable discrete amenable groups G have mixing (funny) rank-one free actions?

Recall that a measure preserving action $T = (T_g)_{g \in G}$ of G on a standard probability space (X, \mathfrak{B}, μ) is called

- mixing if $\lim_{g\to\infty} \mu(A \cap T_g B) = \mu(A)\mu(B)$ for all $A, B \in \mathfrak{B}$,
- mixing of order l if for any $\epsilon > 0$ and $A_0, \ldots, A_l \in \mathfrak{B}$, there exists a finite subset $K \subset G$ such that

$$|\mu(T_{g_0}A_0\cap\cdots\cap T_{g_l}A_l)-\mu(A_0)\cdots\mu(A_l)|<\epsilon$$

for each collection $g_0, \ldots, g_l \in G$ with $g_i g_j^{-1} \notin K$ if $i \neq j$,

^{*} The work was supported in part by CRDF, grant UM1-2546-KH-03. Received March 1, 2005 and in revised form August 9, 2005

- weakly mixing if the diagonal action $T \times T := (T_g \times T_g)_{g \in G}$ of G on the product space $(X \times X, \mathfrak{B} \otimes \mathfrak{B}, \mu \times \mu)$ is ergodic,
- totally ergodic if every co-finite subgroup in G acts ergodically,
- **rigid** if there exists a sequence $g_n \to \infty$ in G such that

$$\lim_{n\to\infty}\mu(A\cap T_{g_n}B)=\mu(A\cap B)\quad\text{for all }A,B\in\mathfrak{B}.$$

We say that T has **funny rank one** if there exist a sequence of measurable subsets $(A_n)_{n=1}^{\infty}$ in X and a sequence of finite subsets $(F_n)_{n=1}^{\infty}$ in G such that the subsets $T_g F_n$, $g \in F_n$, are pairwise disjoint for any n and

$$\lim_{n \to \infty} \min_{H \subset F_n} \mu \left(B \bigtriangleup \bigsqcup_{g \in H} T_g A_n \right) = 0 \quad \text{for every } B \in \mathfrak{B}.$$

If, moreover, $(F_n)_{n=1}^{\infty}$ is a subsequence of some 'natural' Følner sequence in G, we say that T has **rank one**. For instance, if $G = \mathbb{Z}^d$, this 'natural sequence' is just the sequence of cubes; if $G = \sum_{i=1}^{\infty} G_i$ with every G_i a finite group, the sequence $\sum_{i=1}^{n} G_i$ is 'natural', etc.

Up to now various examples of mixing rank-one actions were constructed for $-G = \mathbb{Z}$ in [Or], [Ru], [Ad], [CrS], etc.,

- $-G = \mathbb{Z}^2$ in [AdS],
- $-G = \mathbb{R}$ in [Pr], [Fa],
- $G = \mathbb{R}^{d_1} \times \mathbb{Z}^{d_2} \text{ in [DaS]}.$

We also mention two more constructions of rank-one actions for

- $G = \mathbb{Z} \oplus \bigoplus_{n=1}^{\infty} \mathbb{Z}/2\mathbb{Z}$ in [Ju], where it was claimed that the Z-subaction is mixing but it was only shown that it is weakly mixing, and
- G is a countable Abelian group with a subgroup \mathbb{Z}^d such that the quotient G/\mathbb{Z}^d is locally finite in [Ma], where it was proved that a \mathbb{Z} -subaction is mixing and it was asked whether the whole action is mixing.

Notice that in all of these examples G is Abelian and has elements of infinite order. In contrast to that we provide a different class of groups for which the answer to the question of D. Rudolph is affirmative.

THEOREM 0.1: Let $G = \bigoplus_{i=1}^{\infty} G_i$, where G_i is a non-trivial finite group for every *i*.

- (i) There exist uncountably many pairwise disjoint (and hence pairwise nonisomorphic) mixing rank-one strictly ergodic actions of G on a Cantor set. Moreover, these actions are mixing of any order.
- (ii) There exists a weakly mixing rigid (and hence non-mixing) rank-one strictly ergodic action of G on a Cantor set.

342

Concerning (i), it is noteworthy that any mixing rank-one Z-action is mixing of any order by [Ka] and [Ry] (see also an extension of that to actions of some Abelian groups with elements of infinite order in [JuY]). We do not know whether this fact holds for all mixing rank-one action of countable sums of finite groups.

To prove the theorem, we combine the original Ornstein's idea of 'random spacer' (in the cutting-and-stacking construction process) [Or] and the more recent (C, F)-construction developed in [Ju], [Da1], [Da2], [DaS1], [DaS2] to produce funny rank-one actions with various dynamical properties. However, unlike all of the known examples of (C, F)-actions, the actions in this paper are constructed without adding any spacer (cf. with [Ju], where all the spacers relate to Z-subaction only). Instead of that on the *n*-th step we just cut the *n*-'column' into 'subcolumns' and then rotate each 'subcolumn' in a 'random way'. In the limit we obtain a topological G-action on a compact Cantor space.

Our next concern is to describe all ergodic self-joinings of the G-actions constructed in Theorem 0.1. Recall a couple of definitions.

Given two ergodic G-actions T and T' on (X, \mathfrak{B}, μ) and $(X', \mathfrak{B}', \mu')$ respectively, we denote by J(T, T') the set of **joinings** of T and T', i.e. the set of $(T_g \times T'_g)_{g \in G}$ -invariant measures on $\mathfrak{B} \otimes \mathfrak{B}'$ whose marginals on \mathfrak{B} and \mathfrak{B}' are μ and μ' respectively. The corresponding dynamical system $(X \times X', \mathfrak{B} \otimes \mathfrak{B}', \mu \times \mu')$ is also called a joining of T and T'. By $J^e(T, T') \subset J(T, T')$ we denote the subset of ergodic joinings of T and T' (it is never empty). In a similar way one can define the joinings $J(T_1, \ldots, T_l)$ for any finite family T_1, \ldots, T_l of G-actions. If $J(T_1, \ldots, T_l) = \{\mu_1 \times \cdots \times \mu_l\}$ then the family T_1, \ldots, T_l is called **disjoint**. If $T_1 = \cdots = T_l$ we speak about *l*-fold self-joinings of T_1 and use notation $J_l(T)$ for $J(\underline{T}, \ldots, \underline{T})$. For $g \in G$, we denote by g^{\bullet} the conjugacy class of g. We

also let

$$FC(G) := \{g \in G | g^{\bullet} \text{ is finite}\}.$$

Clearly, FC(G) is a normal subgroup of G. If G is Abelian or G is a sum of finite groups then FC(G) = G. For any $g \in FC(G)$, we define a measure $\mu_{g^{\bullet}}$ on $(X \times X, \mathfrak{B} \otimes \mathfrak{B})$ by setting

$$\mu_{g^{\bullet}}(A \times B) := \frac{1}{\#g^{\bullet}} \sum_{h \in g^{\bullet}} \mu(A \cap T_h B).$$

It is easy to verify that $\mu_{g^{\bullet}}$ is a self-joining of T. Moreover, the map $(x, T_h^{-1}x) \mapsto (x, h)$ is an isomorphism of $(X \times X, \mu_{g^{\bullet}}, T \times T)$ onto $(X \times g^{\bullet}, \mu \times \nu, \widetilde{T})$, where

 ν is the equidistribution on g^{\bullet} and the G-action $\widetilde{T} = (\widetilde{T}_t)_{t \in G}$ is given by

$$\widetilde{T}_t(x,h)=(T_tx,tht^{-1}),\quad x\in X,\ h\in g^\bullet.$$

It follows that \widetilde{T} (and hence the self-joining $\mu_{g^{\bullet}}$ of T) is ergodic if and only if the action $(T_t)_{t \in C(g)}$ is ergodic, where $C(g) = \{t \in G | tg = gt\}$ stands for the centralizer of g in G. Notice also that C(g) is a co-finite subgroup of G because of $g \in FC(G)$. Hence $\{\mu_{g^{\bullet}} | g \in FC(G)\} \subset J_2^e(T)$ whenever T is totally ergodic. Definition 0.2: If $J_2^e(T) \subset \{\mu_{g^{\bullet}} | g \in FC(G)\} \cup \{\mu \times \mu\}$ then we say that T has **2-fold minimal self-joinings** (MSJ₂).

This definition extends naturally to higher order self-joinings as follows. Given $l \ge 1$ and $g \in G^{l+1}$, we denote by $g^{\bullet l}$ the orbit of g under the G-action on G^{l+1} by conjugations:

$$h \cdot (g_0, \ldots, g_l) := (hg_0h^{-1}, \ldots, hg_lh^{-1}).$$

Let P be a partition of $\{0, \ldots, l\}$. For an atom $p \in P$, we denote by i_p the minimal element in p. We say that an element $g = (g_0, \ldots, g_l) \in FC(G)^{l+1}$ is P-subordinated if $g_{i_p} = 1_G$ for all $p \in P$. For any such g, we define a measure $\mu_{g^{\bullet l}}$ on $(X^{l+1}, \mathfrak{B}^{\otimes (l+1)})$ by setting

$$\mu_{g^{\bullet l}}(A_0 \times \cdots \times A_l) := \frac{1}{\#g^{\bullet l}} \sum_{(h_0, \dots, h_l) \in g^{\bullet l}} \prod_{p \in P} \mu\left(\bigcap_{i \in p} T_{h_i} A_i\right).$$

It is easy to verify that $\mu_{g^{\bullet l}}$ is an (l+1)-fold self-joining of T. Reasoning as above one can check that $\mu_{g^{\bullet l}}$ is ergodic whenever T is weakly mixing.

Definition 0.3: We say that T has (l+1)-fold minimal self-joinings (MSJ_{l+1}) if

 $J_{l+1}^{e}(T) \subset \{\mu_{q^{\bullet l}} | g \text{ is } P \text{-subordinated for a partition } P \text{ of } \{0, \dots, l\}\}.$

If T has MSJ_l for any l > 1, we say that T has MSJ.

In case G is Abelian, these definitions agree with the—common now—definitions of MSJ_{l+1} and MSJ by A. del Junco and D. Rudolph [JuR] who considered self-joinings $\mu_{g^{\bullet l}}$ only when g belongs to the center of G^{l+1} . However, we find their definition somewhat restrictive for non-commutative groups since, for instance, countable sums of non-commutative finite groups can never have actions with MSJ_2 in their sense.

Now we record the second main result of this paper.

THEOREM 0.4: The actions constructed in Theorem 0.1(i) all have MSJ.

We notice that a part of the analysis from [Ru] can be carried over to the case of G-actions with MSJ. In this paper we only show that such actions have trivial product centralizer. Moreover, as follows from [Da3], every G-action with MSJ_2 is effectively prime, i.e. has no factors except for the obvious ones: the sub- σ -algebras of subsets fixed by finite normal subgroups in G. In particular, there exist no free factors.

We now briefly summarize the organization of the paper. In Section 1 we outline the (C, F)-construction of rank-one actions as it appeared in [Da1]. In Section 2, for any countable sum G of finite groups, we construct a (C, F)-action T of G which is mixing of any order. A rigid weakly mixing action of G also appears there. In Section 3 we demonstrate that T has MSJ. In Section 4 we show how to perturb the construction of T to obtain an uncountable family of pairwise disjoint mixing rank-one G-actions with MSJ. In the final Section 5 we discuss some implications of MSJ: trivial centralizer, trivial product centralizer and effective primality.

ACKNOWLEDGEMENT: The author thanks the referee for the useful suggestions that improved the paper. In particular, in the present proof of Theorem 0.4 we deduce MSJ_l from the *l*-fold mixing (as J. King does for \mathbb{Z} -actions in [Ki]). Our original proof (independent of multiple mixing) was longer and noticeably more complicated.

1. (C, F)-construction

In this section we recall the (C, F)-construction of rank-one actions.

From now on $G = \sum_{i=1}^{\infty} G_i$, where G_i is a non-trivial finite group for each $i \ge 1$. To construct a probability preserving (C, F)-action of G (see [Ju], [Da1], [DaS2]) we need to define two sequences $(F_n)_{n\ge 0}$ and $(C_n)_{n\ge 1}$ of finite subsets in G such that the following are satisfied:

(1.1) $(F_n)_{n\geq 0}$ is a Folner sequence in G, $F_0 = \{1_G\},\$

(1.2)
$$F_n C_{n+1} \subset F_{n+1}, \quad C_{n+1} > 1,$$

(1.3)
$$F_n c \cap F_n c' = \emptyset \quad \text{for all } c \neq c' \in C_{n+1},$$

(1.4)
$$\lim_{n \to \infty} \frac{\#F_n}{\#C_1 \cdots \#C_n} < \infty.$$

Suppose that an increasing sequence of integers $0 < k_1 < k_2 < \cdots$ is given. Then we define $(F_n)_{n\geq 0}$ by setting $F_0 := \{1_G\}$ and $F_n := \sum_{i=1}^{k_n} G_i$ for $n \geq 1$. Clearly, (1.1) is satisfied. Suppose now that we are also given a sequence of maps $s_n: H_n \to F_n$, where $H_0 := \sum_{i=1}^{k_1} G_i$ and $H_n := \sum_{i=k_n+1}^{k_{n+1}} G_i$ for $n \ge 1$. Then we define two sequences of maps $c_{n+1}, \phi_n: H_n \to F_{n+1}$ by setting $\phi_n(h) := (0, h)$ and $c_{n+1}(h) := (s_n(h), h)$. Finally, we let $C_{n+1} := c_{n+1}(H_n)$ for all $n \ge 0$. It is easy to verify that (1.2)–(1.4) are all fulfilled. Moreover, a stronger version of (1.2) holds:

(1.5)
$$F_n C_{n+1} = F_{n+1}.$$

We now put $X_n := F_n \times C_{n+1} \times C_{n+2} \times \cdots$ and define a map $i_n : X_n \to X_{n+1}$ by setting

$$i_n(f_n, d_{n+1}, d_{n+2}, \ldots) := (f_n d_{n+1}, d_{n+2}, \ldots).$$

Clearly, X_n is a compact Cantor space. It follows from (1.5) and (1.3) that i_n is well defined and it is a homeomorphism of X_n onto X_{n+1} . Denote by X the topological inductive limit of the sequence $(X_n, i_n)_{n=1}^{\infty}$. As a topological space X is canonically homeomorphic to any X_n and in the sequel we will often identify X with X_n suppressing the canonical identification maps. We need the structure of inductive limit to define the (C, F)-action T on X as follows. Given $g \in G$, consider any $n \geq 0$ such that $g \in F_n$. Every $x \in X$ can be written as an infinite sequence $x = (f_n, d_{n+1}, d_{n+2}, \ldots)$ with $f_n \in F_n$ and $d_m \in C_m$ for m > n (i.e. we identify X with X_n). Now we put

$$T_g x := (gf_n, d_{n+1}, d_{n+2}, \ldots) \in X_n.$$

It is easy to verify that T_g is a well defined homeomorphism of X. Moreover, $T_g T_{g'} = T_{gg'}$, i.e. $T := (T_g)_{g \in G}$ is a topological action of G on X.

Definition 1.1: We call T the (C, F)-action of G associated with the sequence $(k_n, s_{n-1})_{n=1}^{\infty}$.

We list without proof several properties of T. They can be verified easily by the reader (see also [Da1]).

- -T is a minimal uniquely ergodic (i.e. strictly ergodic) free action of G.
- Two points $x = (f_n, d_{n+1}, d_{n+2}, ...)$ and $x = (f'_n, d'_{n+1}, d'_{n+2}, ...) \in X_n$ are *T*-orbit equivalent if and only if $d_i = d'_i$ eventually (i.e. for all large enough *i*). Moreover, $x' = T_g x$ if and only if

$$g = \lim_{i \to \infty} f'_n d'_{n+1} \cdots d'_{n+i} d^{-1}_{n+i} \cdots d^{-1}_{n+1} f^{-1}_n$$

— The only T-invariant probability measure μ on X is the product of the equidistributions on F_n and C_{n+i} , $i \in \mathbb{N}$ (if X is identified with X_n).

For each $A \subset F_n$, we let $[A]_n := \{x = (f_n, d_{n+1}, \ldots) \in X_n | f_n \in A\}$ and call it an *n*-cylinder. The following holds:

$$\begin{split} & [A]_n \cap [B]_n = [A \cap B]_n, \quad \text{and} \quad [A]_n \cup [B]_n = [A \cup B]_n, \\ & [A]_n = \bigsqcup_{d \in C_{n+1}} [Ad]_{n+1}, \\ & T_g[A]_n = [gA]_n \quad \text{if } g \in F_n, \\ & \mu([Ad]_{n+1}) = \frac{1}{\#C_{n+1}} \mu([A]_n) \quad \text{for any } d \in C_{n+1}, \\ & \mu([A]_n) = \lambda_{F_n}(A), \end{split}$$

where λ_{F_n} is the normalized Haar measure on F_n . Moreover, for each measurable subset $B \subset X$,

(1.6)
$$\lim_{n \to \infty} \min_{A \subseteq F_n} \mu(B \triangle [A]_n) = 0$$

Hence T has rank one.

2. Mixing (C, F)-actions

Our purpose in this section is to construct a rank-one action of G which is mixing of any order. This action will appear as a (C, F)-action associated with some specially selected sequence $(k_n, s_{n-1})_{n\geq 1}$. We first state several preliminary results.

Given finite sets A and B and a map $x \in A^B$, we denote by dist x or $\operatorname{dist}_{b \in B} x(b)$ the measure $(\#B)^{-1} \sum_{b \in B} \chi_{x(b)}$ on A. Here $\chi_{x(b)}$ stands for the probability supported at the point x(b).

LEMMA 2.1: Let A be a finite set and let λ be the equidistribution on A. Then for any $\epsilon > 0$ there exist c > 0 and $m \in \mathbb{N}$ such that for any finite set B with #B > m,

$$\lambda^B(\{x \in A^B \mid \|\operatorname{dist} x - \lambda\| > \epsilon\}) < e^{-c\#B}$$

For the proof we refer to [Or] or [Ru]. We will also use the following combinatorial lemma.

LEMMA 2.2: For any $l \in \mathbb{N}$, let $N_l := 3^{l(l-1)/2}$ and $\delta_l := 5^{-l(l-1)/2}$. Let H be a finite group. Then for any family h_1, \ldots, h_l of mutually different elements of H and any subset $B \subset H$ with $\#B > 3/\delta_l$, there exists a partition of B into subsets B_i , $1 \le i \le N_l$, such that the subsets $h_1B_i, h_2B_i, \ldots, h_lB_i$ are mutually disjoint and $\#B_i \ge \delta_l \#B$ for any i. A. I. DANILENKO

Proof: We leave to the reader the simplest case when l = 2. Hint: assume that $h_1 = 1_H$ and consider the partition of H into the right cosets by the cyclic group generated by h_2 .

Suppose that we have already proved the assertion of the lemma for some land we want to prove it for l + 1. Take any $h_1 \neq h_2 \neq \cdots \neq h_{l+1} \in H$ (in such a way we denote mutually different elements of H). Given a subset $B \subset H$ with $\#B > 3/\delta_l$, we first partition B into subsets B_i , $1 \leq i \leq N_l$, such that the subsets $h_2B_i, h_3B_i, \ldots, h_{l+1}B_i$ are mutually disjoint and $\#B_i \geq \delta_l \#B \geq 3 \cdot 5^l$. For every i, there exists a partition $B_i = \bigsqcup_{i_1=1}^3 B_{i,i_1}$ such that $h_1B_{i,i_1} \cap h_2B_{i,i_1} =$ \emptyset and $\#B_{i,i_1} \geq 0.2\#B_i$, $1 \leq i_1 \leq 3$. Next, we partition every B_{i,i_1} into 3 subsets B_{i,i_1,i_2} such that $h_1B_{i,i_1,i_2} \cap h_3B_{i,i_1,i_2} = \emptyset$ and $\#B_{i,i_1,i_2} \geq 0.2\#B_{i,i_1}$, $1 \leq i_2 \leq 3$, and so on. Finally, we obtain a partition

$$B = \bigsqcup_{i=1}^{N_l} \bigsqcup_{i_1, \dots, i_l=1}^{3} B_{i, i_1, \dots, i_l}$$

which is as desired.

Given a finite set A, a finite group H and elements $h_1, \ldots, h_l \in H$, we denote by π_{h_1,\ldots,h_l} the map $A^H \to (A^l)^H$ given by

$$(\pi_{h_1,\ldots,h_l}x)(k) = (x(h_1k),\ldots,x(h_lk)).$$

For $x \in A^H$, we define $x^* \in A^H$ by setting $x^*(h) := x(h^{-1}), h \in H$.

LEMMA 2.3: Given $l \in \mathbb{N}$ and $\epsilon > 0$, there exists $m \in \mathbb{N}$ such that for any finite group H with #H > m, one can find $s \in A^H$ such that

(2.1)
$$\|\operatorname{dist} \pi_{h_1,\dots,h_l} s - \lambda^l\| < \epsilon \quad \text{and} \quad \|\operatorname{dist} \pi_{h_1,\dots,h_l} s^* - \lambda^l\| < \epsilon$$

for all $h_1 \neq h_2 \neq \cdots \neq h_l \in H$.

Proof: Take any finite group H and set

$$B_H := \bigcup_{h_1 \neq \cdots \neq h_l \in H} \{ x \in A^H | \| \operatorname{dist} \pi_{h_1, \dots, h_l} x - \lambda^l \| > \epsilon \}.$$

To prove the left hand side inequality in (2.1) it suffices to show that $\lambda^{H}(B_{H}) < 1$ whenever #H is large enough. Moreover, since the map $A^{H} \ni x \mapsto x^{*} \in A^{H}$ preserves the measure λ^{H} , the right hand side inequality in (2.1) will follow from the left hand side one if we prove that $\lambda^{H}(B_{H}) < 0.5$.

Fix $h_1 \neq \cdots \neq h_l \in H$ and apply Lemma 2.2 to partition H into subsets H_i , $1 \leq i \leq N_l$, such that

(2.2) $\#H_i \ge \delta_l \#H$ and

(2.3) the subsets $h_1 H_i, \ldots, h_l H_i$ are mutually disjoint

for every *i*. Denote by $r_i: (A^l)^H \to (A^l)^{H_i}$ the natural restriction map. Then we deduce from (2.3) that $r_i \circ \pi_{h_1,\dots,h_l}$ maps λ^H onto $(\lambda^l)^{H_i}$. Since dist $\pi_{h_1,\dots,h_l} x = \sum_i (\#H_i/\#H) \cdot \operatorname{dist}(r_i \circ \pi_{h_1,\dots,h_l})x$, it follows that

$$\begin{split} \lambda^{H}(\{x \in A^{H} \mid \|\operatorname{dist} \pi_{h_{1},\dots,h_{l}} x - \lambda^{l} \| > \epsilon\}) \\ &\leq \sum_{i} \lambda^{H}(\{x \in A^{H} \mid \|\operatorname{dist}(r_{i} \circ \pi_{h_{1},\dots,h_{l}}) x - \lambda^{l} \| > \epsilon\}) \\ &= \sum_{i} (\lambda^{l})^{H_{i}}(\{y \in (A^{l})^{H_{i}} \mid \|\operatorname{dist} y - \lambda^{l} \| > \epsilon\}). \end{split}$$

By Lemma 2.2 and (2.2), there exists c > 0 such that if #H is large enough then the *i*-th term in the latter sum is less than $e^{-c\#H_i} < e^{-c\delta_l\#H}$. Hence

$$\lambda^{H}(B_{H}) \leq N_{l} \binom{\#H}{l} e^{-c\delta_{l}\#H}$$

and the assertion of the lemma follows.

Now we are ready to define the sequence $(k_n, s_{n-1})_{n\geq 1}$. Fix a sequence of positive reals $\epsilon_n \to 0$. On the first step one can take arbitrary k_1 and s_0 . Suppose now—on the *n*-th step—we already have k_n and s_{n-1} and we want to define k_{n+1} and s_n . For this, we apply Lemma 2.3 with $A := F_n$, l := n and $\epsilon := \epsilon_n$ to find k_{n+1} large so that there exists $s_n \in A^{H_n}$ satisfying

(2.4)
$$\|\operatorname{dist} \pi_{h_1,\dots,h_n} s_n - (\lambda_{F_n})^n\| < \epsilon_n \quad \text{for all } h_1 \neq \dots \neq h_n \in H_n$$

Recall that $H_n := \sum_{i=k_n+1}^{k_{n+1}} G_i$ and $F_n := \sum_{i=1}^{k_n} G_i$ for $n \ge 1$. Without loss of generality we may also assume that $k_{n+1} - k_n \ge n$ and hence $\sum_{n=1}^{\infty} (\#H_n)^{-1} < \infty$.

Denote by T the (C, F)-action of G on (X, \mathfrak{B}, μ) associated with $(k_n, s_{n-1})_{n=1}^{\infty}$. THEOREM 2.4: T is mixing of any order.

Proof: (I) We first show that T is mixing (of order 1). Recall that a sequence $g_n \to \infty$ in G is called **mixing for** T if

$$\lim_{n \to \infty} \mu(T_{g_n} B_1 \cap B_2) = \mu(B_1)\mu(B_2) \quad \text{for all } B_1, B_2 \in \mathfrak{B}$$

A. I. DANILENKO

Clearly, T is mixing if and only if any sequence going to infinity in G contains a mixing subsequence. Since every subsequence of a mixing sequence is mixing itself, to prove (I) it suffices to show that every sequence $(g_n)_{n=1}^{\infty}$ in G with $g_n \in F_{n+1} \setminus F_n$ for all n is mixing. Notice first that there exist (unique) $f_n \in F_n$ and $h_n \in H_n \setminus \{1\}$ with $g_n = f_n \phi_n(h_n)$. Fix any two subsets $A, B \subset F_n$. We notice that for each $h \in H_n$,

$$g_n A c_{n+1}(h) = f_n A s_n(h) \phi_n(h_n h) = f_n A s_n(h) s_n(h_n h)^{-1} c_{n+1}(h_n h)$$

and $f_n A s_n(h) s_n(h_n h)^{-1} \subset F_n$. Hence

$$\mu(T_{g_n}[A]_n \cap [B]_n) = \sum_{h \in H_n} \mu(T_{g_n}[Ac_{n+1}(h)]_{n+1} \cap [B]_n)$$

$$= \sum_{h \in H_n} \mu([f_n As_n(h)s_n(h_n h)^{-1}c_{n+1}(h_n h)]_{n+1} \cap [B]_n)$$

$$= \sum_{h \in H_n} \mu([(f_n As_n(h)s_n(h_n h)^{-1} \cap B)c_{n+1}(h_n h)]_{n+1})$$

$$= \frac{1}{\#H_n} \sum_{h \in H_n} \mu([f_n As_n(h)s_n(h_n h)^{-1} \cap B]_n)$$

$$= \frac{1}{\#H_n} \sum_{h \in H_n} \lambda_{F_n}(f_n As_n(h) \cap Bs_n(h_n h)).$$

We define a map $r_{A,B}: F_n \times F_n \to \mathbb{R}$ by setting

$$r_{A,B}(g,g'):=\lambda_{F_n}(f_nAg\cap Bg').$$

Then it follows from (2.5) and (2.4) that

$$\begin{split} \mu(T_{g_n}[A]_n \cap [B]_n) &= \int_{F_n \times F_n} r_{A,B} d(\operatorname{dist} \pi_{1,h_n} s_n) \\ &= \int_{F_n \times F_n} r_{A,B} d\lambda_{F_n \times F_n} \pm \epsilon_n \\ &= \int_{F_n \times F_n} \lambda_{F_n} (f_n Ag \cap Bg') d\lambda_{F_n}(g) d\lambda_{F_n}(g') \pm \epsilon_n \\ &= \lambda_{F_n}(A) \lambda_{F_n}(B) \pm \epsilon_n \\ &= \mu([A]_n) \mu([B]_n) \pm \epsilon_n. \end{split}$$

Hence we have

(2.6)
$$\max_{A,B\subset F_n} |\mu(T_{g_n}[A]_n \cap [B]_n) - \mu([A]_n)\mu([B]_n)| < \epsilon_n.$$

This and (1.6) imply that the sequence $(g_n)_{n=1}^{\infty}$ is mixing.

(II) Now we fix l > 1 and prove that T is mixing of order l. To this end it is sufficient to show the following: given l+1 sequences $(g_{0,n})_{n=1}^{\infty}, \ldots, (g_{l,n})_{n=1}^{\infty}$ in G such that $g_{i,n} \in F_{n+1}$ and $g_{i,n}g_{j,n}^{-1} \notin F_n$ whenever $i \neq j$,

$$\max_{A_0,...,A_l} |\mu(T_{g_{0,n}}[A_0]_n \cap \dots \cap T_{g_{l,n}}[A_l]_n) - \mu([A_0]_n) \cdots \mu([A_l]_n)| < \epsilon_n$$

for all n > l. Notice that for every $n \in \mathbb{N}$ and $0 \leq j \leq l$, there exist unique $f_{j,n} \in F_n$ and $h_{j,n} \in H_n$ with $g_{j,n} = f_{j,n}\phi_n(h_{j,n})$. Moreover, $h_{0,n} \neq h_{2,n} \cdots \neq h_{1,n}$. Then slightly modifying the argument in (I), we compute

$$\mu(T_{g_{0,n}}[A_0]_n \cap \dots \cap T_{g_{l,n}}[A_l]_n)$$
(2.7)
$$= \int_{F_n^l} \lambda_{F_n}(f_{0,n}A_0g_0 \cap \dots \cap f_{l,n}A_lg_l)d(\lambda_{F_n})^{l+1}(g_0,\dots,g_l) \pm \epsilon_n$$

$$= \lambda_{F_n}(A_0) \cdots \lambda_{F_n}(A_l) \pm \epsilon_n = \mu([A_0]_n) \cdots \mu([A_l]_n) \pm \epsilon_n.$$

To construct a weakly mixing rigid action of G we define another sequence $(\tilde{k}_n, \tilde{s}_{n-1})_{n\geq 1}$. When n is odd, we choose \tilde{k}_n and \tilde{s}_{n-1} to satisfy the following weaker version of (2.4):

(2.8)
$$\max_{1 \neq h \in H_n} \|\operatorname{dist} \pi_{1,h} s_n - \lambda_{F_n} \times \lambda_{F_n}\| < \epsilon_n.$$

When n is even, we just set $\widetilde{k}_n := \widetilde{k}_{n-1} + 1$ and $\widetilde{s}_n \equiv 1_G$. Denote by \widetilde{T} the (C, F)-action of G on $(\widetilde{X}, \widetilde{\mathfrak{B}}, \widetilde{\mu})$ associated with $(\widetilde{k}_n, \widetilde{s}_{n-1})_{n=1}^{\infty}$.

THEOREM 2.5: \tilde{T} is weakly mixing and rigid.

Proof: Take any sequence $h_n \in H_{2n} \setminus \{1\}$. It follows from part (I) of the proof of Theorem 2.4 and (2.8) that the sequence $(\phi_{2n}(h_n))_{n=1}^{\infty}$ is mixing for \widetilde{T} . Clearly, it is also mixing for $\widetilde{T} \times \widetilde{T}$. Hence $\widetilde{T} \times \widetilde{T}$ is ergodic, i.e. \widetilde{T} is weakly mixing.

Now take any sequence $h_n \in H_{2n+1} \setminus \{1\}$. Notice that (2.5) holds for any choice of $(k_n, s_{n-1})_{n \geq 1}$. Hence we deduce from (2.5) and the definition of \tilde{s}_{2n+1} that

$$\mu(\widetilde{T}_{\phi_{2n+1}(h_n)}[A]_{2n+1} \cap [B]_{2n+1}) = \lambda_{F_{2n+1}}(A \cap B) = \mu([A \cap B]_{2n+1})$$

for all subsets $A, B \subset F_{2n+1}$. This plus (1.6) yield

$$\lim_{n \to \infty} \mu(\widetilde{T}_{\phi_{2n+1}(h_n)}\widetilde{A} \cap \widetilde{B}) = \mu(\widetilde{A} \cap \widetilde{B})$$

for all $\widetilde{A}, \widetilde{B} \in \widetilde{\mathfrak{B}}$. This means that \widetilde{T} is rigid.

3. Self-joinings of T

This section is devoted entirely to the proof of the following theorem.

THEOREM 3.1: The action T constructed in the previous section has MSJ.

Proof: (I) We first show that T has MSJ₂. Since T is weakly mixing, we need to establish that

$$J_2^e(T) = \{\mu_g \bullet \mid g \in G\} \cup \{\mu \times \mu\}.$$

Take any $\nu \in J_2^e(T)$. Let \mathfrak{F}_n denote the sub- σ -algebra of $(T_g \times T_g)_{g \in F_n}$ -invariant subsets. Then $\mathfrak{F}_1 \supset \mathfrak{F}_2 \supset \cdots$ and $\bigcap_n \mathfrak{F}_n = \{\emptyset, X \times X\} \pmod{\nu}$. Since there are only countably many cylinders, we deduce from the martingale convergence theorem that for ν -a.a. (x, x'),

(3.1)
$$E(\chi_{B \times B'} | \mathfrak{F}_{n-1})(x, x') = \frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \chi_{B \times B'}(T_g x, T_g x') \to \nu(B \times B')$$

as $n \to \infty$ for any pair of cylinders $B, B' \subset X$. Fix such a point (x, x'). It is called **generic** for $(T \times T, \nu)$. Given any n > 0, we can write x and x' as infinite sequences

$$x = (f_n, d_{n+1}, d_{n+2}, \ldots)$$
 and $x' = (f'_n, d'_{n+1}, d'_{n+2}, \ldots)$

with $f_n, f'_n \in F_n$ and $d_i, d'_i \in C_i$ for all i > n. Recall that $f_n := f_0 d_1 \cdots d_n$ and $f'_n := f'_0 d'_1 \cdots d'_n$. We set $t_n := f'_n f_n^{-1}$, n > 0. Fix a pair of cylinders, say *m*-cylinders, *B* and *B'*. If n > m and $g \in F_n$ then $T_g x' = (gf'_n, d'_{n+1}, d'_{n+2}, \ldots)$. Hence $T_g x' \in B'$ if and only if $T_g T_{t_n} x \in B'$. Therefore

$$\chi_{B\times B'}(T_g x, T_g x') = \chi_{T_g^{-1}B\cap T_{t_n}^{-1}T_g^{-1}B'}(x).$$

Since x is generic for (T, μ) , it follows that

$$\lim_{l \to \infty} \frac{1}{\#F_l} \sum_{a \in F_l} \chi_{T_g^{-1}B \cap T_{t_n}^{-1}T_g^{-1}B'}(T_a x) = \mu(T_g^{-1}B \cap T_{t_n}^{-1}T_g^{-1}B').$$

Therefore (3.1) yields

(3.2)
$$\lim_{n \to \infty} \frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \mu(T_g^{-1}B \cap T_{t_n}^{-1}T_g^{-1}B') = \nu(B \times B').$$

Consider now two cases. If $t_n \notin F_{n-1}$ for infinitely many n, then passing to the limit in (3.2) along this subsequence and making use of (2.6) we obtain that $\mu(B)\mu(B') = \nu(B \times B')$. Hence $\mu \times \mu = \nu$. If, otherwise, there exists N > 0

such that $t_n \in F_{n-1}$, i.e. $d_n = d'_n$, for all n > N, then x and x' are T-orbit equivalent, $t_n = t_N$ and

$$\frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \mu(T_g^{-1}B \cap T_{t_n}^{-1}T_g^{-1}B') = \frac{1}{\#F_N} \sum_{g \in F_N} \mu(B \cap T_g T_{t_N}^{-1}T_g^{-1}B')$$
$$= \mu_{(t_N^{-1})} \bullet (B \times B').$$

Passing to the limit in (3.1) we obtain that $\nu = \mu_{(t_N^{-1})}$.

(II) Now we fix l > 1 and show that T has MSJ_{l+1} . Take any joining $\nu \in J_{l+1}^e(T)$ and fix a generic point (x_0, \ldots, x_l) for $(T \times \cdots \times T, \nu)$. Define a partition P of $\{0, \ldots, l\}$ by setting: i_1 and i_2 are in the same atom of P if x_{i_1} and x_{i_2} are T-orbit equivalent. As in (I), for any n, we can write

$$x_j = (f_{j,n-1}, d_{j,n}, d_{j,n+1}, \ldots) \in X_{n-1}, \quad j = 0, \ldots, l.$$

Suppose first that #P = l+1, i.e. P is the finest possible. Then by the proof of (I), each 2-dimensional marginal of ν is $\mu \times \mu$. Since $\sum_{i=1}^{\infty} (\#C_i)^{-1} < \infty$ and $\mu = \lambda_{F_0} \times \lambda_{C_1} \times \lambda_{C_2} \times \cdots$, it follows from the Borel–Cantelli lemma that for ν -a.a. $(y_0, \ldots, y_l) \in X^{l+1}$,

$$\exists N > 0$$
 such that $y_{0,i} \neq y_{1,i} \neq \cdots \neq y_{l,i}$ whenever $i > N$,

where $y_{j,i} \in C_i$ is the *i*-th coordinate of $y_j \in F_0 \times C_1 \times C_2 \times \cdots$. Hence without loss of generality we may assume that this condition is satisfied for (x_0, \ldots, x_l) . Thus, if we set $t_{j,n} := f_{j,n} f_{0,n}^{-1} = f_{j,n-1} d_{j,n} d_{0,n}^{-1} f_{0,n-1}^{-1}$ then $t_{j,n} t_{i,n}^{-1} \notin F_{n-1}$ whenever $i \neq j$. Slightly modifying our reasoning in (I) and making use of (2.7) instead of (2.6) we now obtain

$$\nu(B_0 \times \dots \times B_l) = \lim_{n \to \infty} \sum_{g \in F_{n-1}} \chi_{B_0 \times \dots \times B_l}(T_g x_0, \dots, T_g x_l)$$
$$= \lim_{n \to \infty} \sum_{g \in F_{n-1}} \chi_{B_0 \times \dots \times B_l}(T_g x_0, T_g T_{t_{1,n}} x_0, \dots, T_g T_{t_{l,n}} x_0)$$
$$= \lim_{n \to \infty} \sum_{g \in F_{n-1}} \mu(T_g B_0 \cap T_{t_{1,n}}^{-1} T_g B_1 \cap \dots \cap T_{t_{l,n}}^{-1} T_g B_l)$$
$$= \mu(B_0) \cdots \mu(B_l)$$

for any (l+1)-tuple of cylinders B_0, \ldots, B_l . Hence $\nu = \mu \times \cdots \times \mu$.

Consider now the general case and put $t_{j,n} := f_{j,n} f_{i_p,n}^{-1}$ for each $j \in p, p \in P$. Recall that $i_p = \min_{j \in p} j$. Then

$$\chi_{B_0 \times \cdots \times B_l}(T_g x_0, \ldots, T_g x_l) = \prod_{p \in P} \chi_{A_p}(x_{i_p}),$$

where $A_p := \bigcap_{j \in p} T_{t_{j,n}}^{-1} T_g^{-1} B_j$. Notice that the point $(x_{i_p})_{p \in P} \in X^{\{i_p \mid p \in P\}}$ is generic for $(T \times \cdots \times T(\#P \text{ times}), \kappa)$, where κ stands for the projection of ν onto $X^{\{i_p \mid p \in P\}}$. By the first part of (II), $\kappa = \mu \times \cdots \times \mu$ (#P times). Hence

$$\nu(B_0 \times \dots \times B_l) = \lim_{n \to \infty} \frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \chi_{B_0 \times \dots \times B_l}(T_g x_0, \dots, T_g x_l)$$
$$= \lim_{n \to \infty} \frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \prod_{p \in P} \mu(A_p).$$

As in (I), a 'stabilization' property holds: there exists M > 0 such that $t_{j,n} = t_{j,M}$ for all n > M. We now set $g := (t_{0,M}^{-1}, \ldots, t_{l,M}^{-1})$. Clearly, g is P-subordinated. Hence

$$\nu(B_0 \times \dots \times B_l) = \frac{1}{\#F_M} \sum_{g \in F_M} \prod_{p \in P} \mu\left(\bigcap_{j \in p} T_g T_{t_{j,M}} T_g^{-1} B_j\right) = \mu_{g^{\bullet l}}(B_0 \times \dots \times B_l). \blacksquare$$

4. Uncountably many mixing actions with MSJ

In this section the proof of Theorems 0.1(i) and 0.4 will be completed. We first apply Lemma 2.3 to construct k_{n+1} and $s_n, \hat{s}_n \in F_n^{H_n}$ in such a way that (2.4) is satisfied for both s_n and \hat{s}_n and, in addition,

(4.1)
$$\| \underset{h \in H_n}{\operatorname{dist}} (s_n(hk), \widehat{s}_n(hk')) - \lambda_{F_n} \times \lambda_{F_n} \| < \epsilon_n$$

for all $k, k' \in H_n$. Next, given $\sigma \in \{0, 1\}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we define $s_n^{\sigma}: H_n \to F_n$ by setting

$$s_n^{\sigma} = \begin{cases} s_n & \text{if } \sigma(n) = 0, \\ \widehat{s}_n & \text{if } \sigma(n) = 1. \end{cases}$$

Now we denote by T^{σ} the (C, F)-action of G associated with $(k_n, s_{n-1}^{\sigma})_{n=1}^{\infty}$. Let Σ be an uncountable subset of $\{0, 1\}^{\mathbb{N}}$ such that for any $\sigma, \sigma' \in \Sigma$, the subset $\{n \in \mathbb{N} | \sigma(n) \neq \sigma'(n)\}$ is infinite.

THEOREM 4.1:

- (i) For any $\sigma \in \{0,1\}^{\mathbb{N}}$, the action T^{σ} is mixing and has MSJ.
- (ii) If $\sigma, \sigma' \in \Sigma$ and $\sigma \neq \sigma'$ then T^{σ} and $T^{\sigma'}$ are disjoint.

Proof: (i) follows from the proof of Theorem 3.1, since (2.4) is satisfied for s_n^{σ} for all $\sigma \in \{0, 1\}^{\mathbb{N}}$ and $n \in \mathbb{N}$.

(ii) Let $\nu \in J^e(T^{\sigma}, T^{\sigma'})$. Take a generic point (x, x') for $(T^{\sigma} \times T^{\sigma'}, \nu)$. Consider any *n* such that $\sigma(n) \neq \sigma'(n)$. Then we can write *x* and *x'* as infinite sequences $x = (f_n, d_{n+1}, d_{n+2}, ...)$ and $x' = (f'_n, d'_{n+1}, d'_{n+2}, ...)$ with $f_n, f'_r \in F_n$ and $d_m, d'_m \in C_m$ for all m > n. Take any $g \in F_{n+1}$. Then we have the following expansions:

$$g = a\phi_n(h), \quad d_{n+1} = s_n^{\sigma}(h_n)\phi_n(h_n) \quad \text{and} \quad d'_{n+1} = s_n^{\sigma'}(h'_n)\phi_n(h'_n)$$

for some uniquely determined $a \in F_n$ and $h, h_n, h'_n \in H_n$. Since

$$\begin{split} gf_n d_{n+1} &= af_n s_n^{\sigma}(h_n) s_n^{\sigma}(hh_n)^{-1} c_{n+1}(hh_n) \quad \text{and} \\ gf_n' d_{n+1}' &= af_n' s_n^{\sigma'}(h_n') s_n^{\sigma'}(hh_n')^{-1} c_{n+1}(hh_n'), \end{split}$$

the following holds for any pair of subsets $A, A' \subset F_n$:

$$\begin{aligned} &\frac{\#\{g \in F_{n+1} | (T_g^{\sigma}x, T_g^{\sigma'}x') \in [A]_n \times [A']_n\}}{\#F_{n+1}} \\ &= \frac{1}{\#F_n} \sum_{a \in F_n} \frac{\#\{h \in H_n | af_n s_n^{\sigma}(h_n) s_n^{\sigma}(hh_n)^{-1} \in A, af'_n s_n^{\sigma'}(h'_n) s_n^{\sigma'}(hh'_n)^{-1} \in A'\}}{\#H_n} \\ &= \frac{1}{\#F_n} \sum_{a \in F_n} \xi_n (A^{-1}af_n s_n^{\sigma}(h_n) \times A'^{-1}af'_n s_n^{\sigma'}(h'_n)), \end{aligned}$$

where $\xi_n := \operatorname{dist}_{h \in H_n}(s_n^{\sigma}(hh_n), s_n^{\sigma'}(hh'_n))$. This and (4.1) yield

(4.2)
$$\frac{\#\{g \in F_{n+1} | (T_g^{\sigma} x, T_g^{\sigma'} x') \in [A]_n \times [A']_n\}}{\#F_{n+1}} = \lambda_{F_n}(A)\lambda_{F_n}(A') \pm \epsilon_n$$
$$= \mu([A]_n)\mu([A']_n) \pm \epsilon_n.$$

Since (x, x') is generic for $(T^{\sigma} \times T^{\sigma'}, \nu)$ and (4.2) holds for infinitely many n, we deduce that $\nu = \mu \times \mu$.

By refining the above argument the reader can strengthen Theorem 0.1(i) as follows: there exists an uncountable family of mixing (of any order) rank-one *G*-actions with MSJ such that any finite subfamily of it is disjoint.

5. On G-actions with MSJ

It follows immediately from Definition 0.2 that if T has MSJ_2 then the centralizer C(T) of T is 'trivial', i.e. $C(T) = \{T_g | g \in C(G)\}$, where C(G) denotes the center of G. Moreover, we will show that T has trivial product centralizer (as D. Rudolph did in [Ru] for \mathbb{Z} -actions).

Let $(X^l, \mathfrak{B}^{\otimes l}, \mu^l, T^{(l)})$ denote the *l*-fold Cartesian product of $(X, \mathfrak{B}, \mu, T)$. Given a permutation σ of $\{1, \ldots, l\}$ and $g_1, \ldots, g_n \in C(T)$, we define a transformation $U_{\sigma,g_1,\ldots,g_l}$ of $(X^l, \mathfrak{B}^{\otimes l}, \mu^l, T^{(l)})$ by setting

$$U_{\sigma,g_1,\ldots,g_l}(x_1,\ldots,x_l):=(T_{g_1}x_{\sigma(1)},\ldots,T_{g_l}x_{\sigma(l)}).$$

Of course, $U_{\sigma,g_1,\ldots,g_l} \in C(T^{(l)})$. We show that for the actions with MSJ, the converse also holds.

PROPOSITION 5.1: If T has MSJ then, for any $l \in \mathbb{N}$, each element of $C(T^{(l)})$ equals to $U_{\sigma,g_1,\ldots,g_l}$ for some permutation σ and elements $g_1,\ldots,g_l \in C(G)$.

Proof: Let $S \in C(T^{(l)})$. We define an ergodic 2-fold self-joining ν of $T^{(l)}$ by setting $\nu(A \times B) := \mu^l(A \cap S^{-1}B)$ for all $A, B \in \mathfrak{B}^{\otimes l}$. Notice that $\nu \in J^e_{2l}(T)$. Since T has MSJ_{2l} , there exists a partition P of $\{1, \ldots, 2l\}$ and a P-subordinated element $g = (g_1, \ldots, g_{2l}) \in FC(G)^{2l}$ such that

(5.1)
$$\nu(A_1 \times \dots \times A_{2l}) = \frac{1}{\#g^{\bullet 2l}} \sum_{(h_1, \dots, h_{2l}) \in g^{\bullet 2l}} \prod_{p \in P} \mu\left(\bigcap_{i \in p} T_{h_i} A_i\right)$$

for all subsets $A_1, \ldots, A_{2l} \in \mathfrak{B}$. Substituting at first $A_1 = \cdots = A_l = X$ and then $A_{l+1} = \cdots = A_{2l} = X$ in (5.1), we derive that #P = l, #p = 2 for all $p \in P$ and $\#g^{\bullet 2l} = 1$. Hence $g_1, \ldots, g_{2l} \in C(G)$ and there exists a bijection σ of $\{1, \ldots, l\}$ such that $P = \{\{i, \sigma(i) + l\} | i = 1, \ldots, l\}$. Therefore it follows from (5.1) that

$$S^{-1}(A_{l+1} \times \cdots \times A_{2l}) = T_{g_{l+1}} A_{l+\sigma(1)} \times \cdots \times T_{g_{2l}} A_{l+\sigma(l)}.$$

As a simple corollary we derive that if T has MSJ then the G-actions $T, T^{(2)}, \ldots$ and $T \times T \times \cdots$ are pairwise non-isomorphic.

After this paper was submitted the author introduced a companion to MSJ concept of *near simplicity* for actions of locally compact second countable groups [Da3]. As appeared, this concept is more general than the simplicity in the sense of A. del Junco and D. Rudolph [JuR] even for Z-actions. For instance, there exist near simple transformations which are disjoint from all del Junco-Rudolph's simple ones. It is shown in [Da3] that an analogue of Veech's theorem on the structure of factors holds for this extended class of simple actions. In particular, if T has MSJ_2 , then for every non-trivial factor \mathfrak{F} of T there exists a compact normal subgroup K of G such that

$$\mathfrak{F} = \operatorname{Fix} K := \{ A \in \mathfrak{B} | \ \mu(T_k A \triangle A) = 0 \text{ for all } k \in K \}.$$

Thus if T has MSJ_2 then T is effectively prime, i.e. T has no effective factors. (Recall that a G-action Q is called effective if $Q_g \neq Id$ for each $g \neq 1_G$.)

References

- [Ad] T. Adams, Smorodinsky's conjecture on rank one systems, Proceedings of the American Mathematical Society 126 (1998), 739–744.
- [AdS] T. Adams and C. E. Silva, \mathbb{Z}^d -staircase actions, Ergodic Theory and Dynamical Systems **19** (1999), 837–850.
- [CrS] D. Creutz and C. E. Silva, Mixing on a class of rank-one transformations, Ergodic Theory and Dynamical Systems 24 (2004), 407–440.
- [Da1] A. I. Danilenko, Funny rank-one weak mixing for nonsingular Abelian actions, Israel Journal of Mathematics 121 (2001), 29–54.
- [Da2] A. I. Danilenko, Infinite rank one actions and nonsingular Chacon transformations, Illinois Journal of Mathematics 48 (2004), 769–786.
- [Da3] A. I. Danilenko, On simplicity concepts for ergodic actions, preprint.
- [DaS1] A. I. Danilenko and C. E. Silva, Multiple and polynomial recurrence for Abelian actions in infinite measure, Journal of the London Mathematical Society (2) 69 (2004), 183–200.
- [DaS2] A. I. Danilenko and C. E. Silva, Mixing rank-one actions of locally compact Abelian groups, preprint.
- [Fa] B. Fayad, Rank one and mixing differentiable flows, Inventiones Mathematicae 160 (2005), 305–340.
- [Ju] A. del Junco, A simple map with no prime factors, Israel Journal of Mathematics **104** (1998), 301–320.
- [JuR] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory and Dynamical Systems 7 (1987), 531–557.
- [JuY] A. del Junco and R. Yassawi, Multiple mixing rank one group actions, Canadian Journal of Mathematics 52 (2000), 332–347.
- [Ka] S. A. Kalikow, Twofold mixing implies threefold mixing for rank one transformations, Ergodic Theory and Dynamical Systems 4 (1984), 237–259.
- [Ki] J. L. King, Joining-rank and the structure of finite rank mixing transformations, Journal d'Analyse Mathématique 51 (1988), 182–227.
- [Ma] B. Madore, Rank-one group actions with simple mixing Z-subactions, New York Journal of Mathematics 10 (2004), 175–194.
- [Or] D. S. Ornstein, On the root problem in ergodic theory, in Proc. Sixth Berkley Symp. Math. Stat. Prob. (Univ. California, Berkeley, Calif., 1970/1971), Vol. II, University of California Press, Berkeley, Calif., 1972, pp. 347–356.
- [Pr] A. Prikhodko, Stochastic constructions of flows of rank one, Matematicheskii Sbornik 192 (2001), 61–92.

- [Ru] D. J. Rudolph, An example of a measure preserving map with minimal selfjoinings, Journal d'Analyse Mathématique 35 (1979), 97-122.
- [Ry] V. V. Ryzhikov, Mixing, rank and minimal self-joining of actions with invariant measure, Matematicheskii Sbornik 183 (1992), 133–160.