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A B S T R A C T  

Let G be a countable direct sum of finite groups. We construct an 
uncountable family of pairwise disjoint mixing (of any order) rank-one 

strictly ergodic free actions of G on a Cantor set. All of them possess the 
property of minimal self-joinings (of any order). Moreover, an example 

of rigid weakly mixing rank-one strictly ergodic free G-action is given. 

0 .  I n t r o d u c t i o n  a n d  d e f i n i t i o n s  

This paper was inspired by the following question of D. Rudolph: 

QUESTION: Which  countable discrete amenable  groups G have mixing ( funny) 

rank-one free actions? 

Recall that a measure preserving action T = (Tg)gea of G on a standard 

probability space (X, ~ ,  #) is called 

- -  mixing if l img_~ #(A M TgB)  = # ( A ) # ( B )  for all A, B E ~ ,  

- -  mixing of  o rder  1 if for any e > 0 and A0, . . . ,  ALE ~ ,  there exists a 

finite subset K C G such that 

I~(TgoA0 n . . .  n Tg, Az ) - #(Ao)  . . . # (Al ) l  < e 

for each collection go, . . . ,  gl E G with gig~ 1 ~ K if i r j ,  
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- -  we a k ly  m i x i n g  if the diagonal action T • T := (Tg • Tg)geG of G on the 

product space (X x X, ~ | ~ ,  # x #) is ergodic, 

- -  t o t a l l y  e r g o d i c  if every co-finite subgroup in G acts ergodically, 

- -  r ig id  if there exists a sequence g~ -~ co in G such that  

lim #(A A TgnB ) = #(A N B) for all A, B e ~ .  
n---*(~ 

We say that  T has f u n n y  r a n k  one  if there exist a sequence of measurable 

subsets (An)n~176 in X and a sequence of finite subsets (Fn)n~=l in G such that  

the subsets TgFn, g 6 F~, are pairwise disjoint for any n and 

lira ~ n n p ( S A  U T g A n )  =0  f o r e v e r y B E ~ .  
n---~ oo 

gEH 

If, moreover, (Fn)n~__l is a subsequence of some 'natural '  Folner sequence in G, 

we say that  T has r a n k  one.  For instance, if G = Z d, this 'natural sequence' 
oo is just the sequence of cubes; if G = ~i=1 Gi with every Gi a finite group, the 

sequence ~ = 1  Gi is 'natural ' ,  etc. 

Up to now various examples of mixing rank-one actions were constructed for 

- -  G = Z in [Or], [Ru], [Ad], [CrS], etc., 

- -  G = Z 2 in [ADS], 

- -  G = ~ i n  [ P r ] ,  [ F a ] ,  

- -  G = R d' • Z d2 in [DaS]. 

We also mention two more constructions of rank-one actions for 

- -  G = Z | ~[~n~__l Z /2Z in [Ju], where it was claimed that  the Z-subaction 

is mixing but  it was only shown that  it is weakly mixing, and 

- -  G is a countable Abelian group with a subgroup ~ d  such that  the quotient 

G/• d is locally finite in [Ma], where it was proved that  a Z-subaction is 

mixing and it was asked whether the whole action is mixing. 

Notice that  in all of these examples G is Abelian and has elements of infinite 

order. In contrast to that  we provide a different class of groups for which the 

answer to the question of D. Rudolph is affirmative. 

THEOREM 0.1: Let G = ~=1c~ Gi, where Gi is a non-trivia] finite group for 

every i. 

(i) There exist uncountably many pa]rwise disjoint (and hence pa]rwise non- 
isomorphic) mixing rank-one strictly ergodic actions of G on a Cantor set. 
Moreover, these actions are mixing of any order. 

(ii) There exists a weakly mixing rigid (and hence non-mixing) rank-one 
strictly ergodic action of G on a Cantor set. 



Vol. 156, 2006 MIXING R A N K - O N E  ACTIONS 343 

Concerning (i), it is noteworthy that any mixing rank-one Z-action is mix- 

ing of any order by [Ka] and [Ry] (see also an extension of that to actions of 

some Abelian groups with elements of infinite order in [JuY]). We do not know 

whether this fact holds for all mixing rank-one action of countable sums of finite 

groups. 

To prove the theorem, we combine the original Ornstein's idea of 'random 

spacer' (in the cutting-and-stacking construction process) [Or] and the more 

recent (C, F)-construction developed in [Ju], [Dal], IDa2], [DaS1], [DaS2] to 

produce funny rank-one actions with various dynamical properties. However, 

unlike all of the known examples of (C, F)-actions, the actions in this paper 

are constructed without adding any spacer (cf. with [Ju], where all the spacers 

relate to Z-subaction only). Instead of that on the n-th step we just cut the 

n-'column' into 'subcolumns' and then rotate each 'subcolumn' in a 'random 

way'. In the limit we obtain a topological G-action on a compact Cantor space. 

Our next concern is to describe all ergodic self-joinings of the G-actions 

constructed in Theorem 0.1. Recall a couple of definitions. 

Given two ergodic G-actions T and T' on (X, ~B, #) and (X', ~ ' ,  #') respec- 

tively, we denote by J(T, T') the set of joinings of T and T', i.e. the set of 

(Tg • T~)gec-invariant measures on ~ |  whose marginals on ~ and ~ '  are # 

and #' respectively. The corresponding dynamical system (X • X', ~| # • #') 
is also called a joining of T and T'. By Je(T, T') C J(T, T') we denote the sub- 

set of ergodic joinings of T and T' (it is never empty). In a similar way one can 

define the joininings J (T1, . . . ,  Tz) for any finite family T1, . . . ,  Tz of G-actions. 

If J(T1,... ,TI) = {#1 • "'" • Pz} then the family T1,...  ,Tt is called disjoint. 

If T1 . . . . .  Tl we speak about /-fold self-joinings of T1 and use notation 

Jr(T) for J(T,... ,T). For g �9 G, we denote by g" the conjugacy class ofg. We 

l times 
also let 

FC(G) := {g �9 G I g" is finite}. 

Clearly, FC(G) is a normal subgroup of G. If G is Abelian or G is a sum of 

finite groups then FC(G) = G. For any g �9 FC(G), we define a measure #g. on 

(X • X, ~ | ~ )  by setting 

1 
#9" (A • B) := #g----~ ~ #(d n ThB). 

hEg" 

It is easy to verify that #g. is a self-joining ofT. Moreover, the map (x, ThlX) 
(x, h) is an isomorphism of (Z • X, #g., T • T) onto (X • g' ,  ~ • ~, T), where 
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u is the equidistribution on g" and the G-action T = (Tt)t~c is given by 

Tt(x,h) = (Ttx, tht-1), x e Z ,  h e g'. 

It follows that T (and hence the self-joining #9" of T) is ergodic if and only if 

the action (Tt)teC(g) is ergodic, where C(g) = {t E G I tg = gt} stands for the 

centralizer of g in G. Notice also that C(g) is a co-finite subgroup of G because 

of g e FC(G). Hence {#9" I g e FC(G)} C J~(T) whenever T is totally ergodic. 

De~nition 0.2: If J~(T) C {#g. I g e FC(G)} U {# x #} then we say that T has 

2-fold minimal  self-joinings (MS J2). 

This definition extends naturally to higher order self-joinings as follows. Given 

l _> 1 and g E G 1+1, we denote by g"  the orbit of g under the G-action on G 1+1 

by conjugations: 

h. (go,... ,gt) := (hgoh-1, . . . ,  hgth-1). 

Let P be a partition of {0, . . . , l} .  For an atom p E P, we denote by ip the 

minimal element in p. We say that an element g = (go,... ,gz) e FC(G) '+1 is 

P - s u b o r d i n a t e d  if gip = l c  for all p E P. For any such g, we define a measure 

#g.~ on ( X ' + I , ~  | by setting 

1 (n ) /.tg.t(A o x .. .  x A , ) : =  :fig., E H # Th, A i  �9 
(ho,. . . ,hl)Eg "t pEP  iEp 

It is easy to verify that #g.t is an (1 + 1)-fold self-joining of T. Reasoning as 

above one can check that #g.~ is ergodic whenever T is weakly mixing. 

De~nition 0.3: We say that T has ( /+l)-fold minimal  self-joinings (MSJI+I) 

if 

J~+I(T) C {#a.~ I g is P-subordinated for a partition P of {0, . . . , /}}.  

If T has MSJl for any I > 1, we say that T has MSJ. 

In case G is Abelian, these definitions agree with thc common now--definiti- 

ons of MSJI+I and MSJ by A. del Junco and D. Rudolph [JuR] who considered 

self-joinings #9.~ only when g belongs to the center of G z+l. However, we find 

their definition somewhat restrictive for non-commutative groups since, for in- 
stance, countable sums of non-commutative finite groups can never have actions 

with MS J2 in their sense. 

Now we record the second main result of this paper. 
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THEOREM 0.4: The actions constructed in Theorem O.l(i) a11 have MSJ. 

We notice that  a part of the analysis from [Ru] can be carried over to the 

case of G-actions with MSJ. In this paper we only show that  such actions have 

trivial product centralizer. Moreover, as follows from [Da3], every G-action with 

MS J2 is effectively prime, i.e. has no factors except for the obvious ones: the 

sub-a-algebras of subsets fixed by finite normal subgroups in G. In particular, 

there exist no free factors. 

We now briefly summarize the organization of the paper. In Section 1 we 

outline the (C, F)-construction of rank-one actions as it appeared in [Dal]. In 

Section 2, for any countable sum G of finite groups, we construct a (C, F)-action 

T of G which is mixing of any order. A rigid weakly mixing action of G also 

appears there. In Section 3 we demonstrate that  T has MSJ. In Section 4 we 

show how to perturb the construction of T to obtain an uncountable family of 

pairwise disjoint mixing rank-one G-actions with MSJ. In the final Section 5 we 

discuss some implications of MS J: trivial centralizer, trivial product centralizer 

and effective primality. 

ACKNOWLEDGEMENT: The author thanks the referee for the useful suggestions 

that  improved the paper. In particular, in the present proof of Theorem 0.4 we 

deduce MS J1 from the/-fold mixing (as J. King does for Z-actions in [Ki]). Our 

original proof (independent of multiple mixing) was longer and noticeably more 

complicated. 

1. (C, F ) - c o n s t r u c t i o n  

In this section we recall the (C, F)-construction of rank-one actions. 

From now on G = Y~-i=l Gi, where G~ is a non-trivial finite group for each 

i _> 1. To construct a probability preserving (C, F)-action of G (see [Ju], [Dal], 

[DaS2]) we need to define two sequences (Fn)n>o and (Cn)n>l of finite subsets 

in G such that  the following are satisfied: 

(1.1) (Fn)n>O is a Folner sequence in G, F0 = {lc},  

(1.2) FnCn+I C Fn+I, Cn+ 1 > 1, 

(1.3) Fnc A Fnc' = O for all c # c' C Cn+l, 

(1.4) lim #F~  < c~. 
n---~oo #C1 . . .  •Cn 

Suppose that  an increasing sequence of integers 0 < kl < k2 < . . .  is given. 

~-~k. G. for n > 1. Then we define (Fn)n>_O by setting F0 := {1G} and Fn := z-~i=l ~ 
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Clearly, (1.1) is satisfied. Suppose now that  we are also given a sequence of maps 

kl x-,k~+l G~ for n > 1. Then we sn: H,~ -~ Fn, where Ho : =  E i _ ~ l  G i  and H~ : -  z-,i=k~+l - 

define two sequences of maps cn+l, Cn: Hn --~ Fn+l by setting Cn(h) := (0, h) 

and Cn+l(h) : :  (sn(h), h). Finally, we let Cn+l := cn+l(Hn) for all n _> 0. It is 

easy to verify that  (1.2)-(1.4) are all fulfilled. Moreover, a stronger version of 

(1.2) holds: 

(1.5) FnC,~+I = F,~+I. 

We now put X,~ := F,~ • Cn+l • C~+2 • .-. and define a map in: Xn --* Xn+l 

by setting 

in(fn, dn+l, d,~+2,...) := (f,~d,~+l, dn+2,. . .) .  

Clearly, Xn is a compact Cantor space. It follows from (1.5) and (1.3) that  

in is well defined and it is a homeomorphism of Xn onto Xn+l. Denote by X 

the topological inductive limit of the sequence (Xn,in)n~=l. As a topological 

space X is canonically homeomorphic to any X~ and in the sequel we will often 

identify X with Xn suppressing the canonical identification maps. We need the 

structure of inductive limit to define the (C, F)-action T on X as follows. Given 

g E G, consider any n >__ 0 such that  g E F~. Every x E X can be written as an 

infinite sequence x = (fn,dn+l, d~+2,. . .)  with fn E F~ and dm E Cm for m > n 

(i.e. we identify X with Xn). Now we put 

Tgx :-- (gfn, dn+l, dn+2,. . . )  E Xn. 

It is easy to verify that  Tg is a well defined homeomorphism of X. Moreover, 

TgTg, = Tgg, , i.e. T := (Tg)gea is a topological action of G on X. 

Definition 1.1: We call T t h e  (C ,F ) - ac t i on  of  G as soc ia t ed  w i t h  t h e  

sequence  (kn, sn-1)n~_-l. 

We list without proof several properties of T. They can be verified easily by 

the reader (see also [Dal]). 

- -  T is a minimal uniquely ergodic (i.e. strictly ergodic) free action of G. 

Two points x ( f ~ , d n + l , d n + 2 , . . )  and x (]~n, ' ' . . . .  dn+l,dn+2,...  ) E Xn 
are T-orbit equivalent if and only if di = d~ eventually (i.e. for all large 

enough i). Moreover, x' = Tgx if and only if 

g .lim I ! t - 1  - 1  --1 = f~dn+l . . ,  dn+idn+i'"dn+lf(~ �9 
$ -"~ 00 

- -  The only T-invariant probability measure # on X is the product of the 

equidistributions on Fn and Cn+i, i E N (if X is identified with Xn). 
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For each A C Fn, we let [Aln := {x = (fn, dn+l,. . .)  �9 Xnl fn �9 A} and call 

it an n -cy l inder .  The following holds: 

[A]~ n [B]~ = [A M B]~, and 

[A]n= [[ [Adln+,, 
d E C n + l  

Tg[A]~ = [gAin if g �9 Fn, 
1 

#([Ad]~+I) - #C~+1 tt([A]~) 

#([A]~) = AF~ (A), 

[AI~U [Bln= [AUB]~,  

for any d �9 C,~+1, 

where AF~ is the normalized Haar measure on Fn. Moreover, for each measurable 

subset B C X, 

(1.6) 

Hence T has rank one. 

lim min #(BA[A]n) = O. 
n -~ oo A C F~ 

2. Mixing (C, F)-actions 

Our purpose in this section is to construct a rank-one action of G which is mixing 

of any order. This action will appear as a (C, F)-act ion associated with some 

specially selected sequence (kn, 8n--1)n>_l. We first state several preliminary 

results. 

Given finite sets A and B and a map x E A B, we denote by dist x or 

distbeB x(b) the measure ( # B )  -1 }-~beB Xz(b) on A. Here X~(b) stands for the 

probability supported at the point x(b). 

LEMMA 2.1: Let A be a finite set and let A be the equidistribution on A. Then 

for any e > 0 there exist c > 0 and m C N such that for any finite set B with 

: f ib  > m, 
AB({x �9 A s] I l d i s t x -  All > c}) < e -c#s .  

For the proof we refer to [Or] or [Ru]. We will also use the following combi- 

natorial lemma. 

LEMMA 2.2: For any l �9 N, let Nz := 3 l(l-1)/2 and 5t := 5 -1(I-1)/2. Let H be 

a finite group. Then for any family h i , . . . ,  hz of mutually different elements of 

H and any subset B C H with # B  > 3/61, there exists a partition o rB  into 

subsets Bi, 1 < i < Nl, such that the subsets hlB~, h2Bi , . . . ,  hzBi are mutually 
disjoint and # B i  >_ at # B  for any i. 
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Proof: We leave to the reader the simplest case when l = 2. Hint: assume 

that  hi = 1H and consider the parti t ion of H into the right cosets by the cyclic 

group generated by h2. 

Suppose that  we have already proved the assertion of the lemma for some l 

and we want to prove it for l §  Take any hi ~ h2 ~ " "  ~ hz+l E H (in 

such a way we denote mutually different elements of H).  Given a subset B C H 

with # B  > 3/(~i, we first partit ion B into subsets Bi, 1 < i < Nz, such that  the 

subsets h2Bi, h3B~, . . . ,  hz+lBi are mutually disjoint and #B~ _> 5z#B _> 3 . 5  I. 
3 For every i, there exists a partit ion Bi = Ui~=l Bi#~ such that  hlBi,~ Mh2Bi#~ = 

0 and #Bi,i~ _> 0 .2#Bi ,  1 < il _< 3. Next, we partit ion every Bi#l into 3 subsets 

B~#~,i2 such that  hlBi#~,~2 Mh3Bi#~,i2 = 0 and #Bi#~,i~ _> 0.2#Bi#~, 1 _< i2 _< 3, 

and so on. Finally, we obtain a partit ion 

Nz 3 
 =ll II 

i = l  Q...#l=l 
Bi,il ,...,il 

which is as desired. I 

Given a finite set A, a finite group H and elements h i , . . . ,  hL E H,  we denote 

by 7rh~ ..... h~ the map A H ---+ (AI) H given by 

(~hl ..... h~X) (k )=(x (h l k ) , . . . , x (h zk ) ) .  

For x E A H, we define x* E A H by setting x*(h) := x(h-1),  h E H. 

LEMMA 2.3: Given l E N and e > 0, there exists m E N such that for any finite 

group H with # H  > m, one can find s E A H such that 

s* Al (2.1) Ildistlrhl ..... hzS- -Al l l<e  and ]]distTrhl ..... h~ - -  II ( s  

[or a11hl ~ h2 ~ .." ~ hi E H. 

Proo~ Take any finite group H and set 

:= ~z c}. BH U {X E AHI II dist 7rhl ..... hlX-- II > 
hlys 

To prove the left hand side inequality in (2.1) it suffices to show that  ~H(BH)  < 

1 whenever # H  is large enough. Moreover, since the map A H ~ x ~ x* E A H 

preserves the measure )~H, the right hand side inequality in (2.1) will follow 

from the left hand side one if we prove that  )~H(BH) < 0.5. 
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Fix hi ~ . . .  ~ hi �9 H and apply Lemma 2.2 to partition H into subsets Hi, 

1 < i < Nz, such that  

(2.2) # H i  > az#H and 

(2.3) the subsets h l H i , . . . ,  hlHi are mutually disjoint 

for every i. Denote by ri: (At) H ---+ (At) Hi the natural restriction map. Then we 

deduce from (2.3) that  ri o ~rhl,...,hz maps ,~H onto (/~l)Hi. Since dist 7rhl ..... h~ X = 

~ i ( # H i / # H ) .  dist(ri o rrhi ..... h~)X, it follows that  

AH ( { x �9 AHI II distr% ..... h,X -- All] > e}) 

_< ~ AH({x �9 AH[ [[ dist(ri o 7rhl ..... h~)X -- Alll > e}) 
i 

= ~-~(Al)U~({y �9 (At) Hi] I[ dist y - Az[I > e}). 
i 

By Lemma 2.2 and (2.2), there exists c > 0 such that  if # H  is large enough 

then the i-th term in the latter sum is less than e -c#H~ < e -caZ#H. Hence 

AH(BH) < N l ( # i H ) e  -caz#H 

and the assertion of the lemma follows. 1 

Now we are ready to define the sequence (kn, sn-1)n>l. Fix a sequence of 

positive reals en ---+ 0. On the first step one can take arbitrary kl and so. 

Suppose now--on the n-th step--we already have kn and Sn-1 and we want to 

define kn+l and Sn. For this, we apply Lemma 2.3 with A := Fn, l := n and 

e := en to find kn+l large so that  there exists sn �9 A un satisfying 

(2.4) [[distTrhl . . . . .  hnSn -- (Ap,~)nll < e,~ for all hx 5 " "  ~ hn �9 Hn. 

~-',knq-1 Recall that  Hn := z-~i=a~+l Gi and Fn := ~ i~1  Gi for n _> 1. Without loss of 

generality we may also assume that  kn+l - kn >_ n and hence ~u~176 -1 

<OO. 

Denote by T the (C, F)-action of G on (X, ~B, #) associated with (kn,sn-x)~_l. 

THEOREM 2.4: T is mixing o[any order. 

Prook (I) We first show that  T is mixing (of order 1). 

Recall that  a sequence gn --+ oo in G is called mi x i n g  for T if 

lim #(Tg,~B 1 NB2)  = / / (B1) / I (B2)  for all B1,B2 6 lB. 
n - - + o 0  
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Clearly, T is mixing if and only if any sequence going to infinity in G contains 

a mixing subsequence. Since every subsequence of a mixing sequence is mixing 

itself, to prove (I) it suffices to show that every sequence (gn),~176 1 in G with 

gn E Fn+l \Fn for all n is mixing. Notice first that there exist (unique) f ,  C Fn 
and h, E Ha \ {1} with gn = fnr Fix any two subsets A, B C F , .  We 

notice that for each h E Hn, 

gnACn+l(h) = fnAsn(h)r = fnAsn(h)sn(hnh)-lcn+l(hn h) 

and fnAsn(h)s~(hnh) -1 C Fn. Hence 

#(Tgn[A]~ M [Bin ) = ~ #(Tg~[Acn+l(h)lu+l M [Bin ) 
hCHn 

= ~ #([fnAsn(h)sn(hnh)-lcn+l(hnh)]n+l M [B]n) 
hEHn 

= ~ #([(fnAs~(h)s~(h~h)-' N B)c~+,(hnh)]~+l) 
(2.5) he~ 

I 
- #H~ ~ #([fnAs~(h)s~(hnh)-i N B]n) 

hEHn 
1 

- #H~ ~ kF~(f~Asn(h)MBsn(h~h)). 
hEHn 

We define a map  rA,B: Fn x Fn --* R by setting 

rA,B(g,g') := )~F~(fnAg n By'). 

Then it follows from (2.5) and (2.4) that 

=/F~ rm,Bd(dist Trl,h~Sn) #(Tg~[g]n M [B]n) x f ,  

= / rA,Bd)~F~xF~ + ~n 
JF, xg~ 

= [ "  )~Fn (fnAg N Sg')d)~Fn (g)d)~F~ (g') + s 
Jf~ xF~ 

= ( B )  + 

= #([A]~)tt([S],~) 4- e~. 

Hence we have 

(2.6) max I~(T~[Aln n [Bin) - #([A]~)#([B]n)I < e~. 
A,BcFn 
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This and (1.6) imply that the sequence (gn)n~=l is mixing. 

(II) Now we fix l > 1 and prove that T is mixing of order I. To this end it 
OO o o  is sufficient to show the following: given l + 1 sequences (g0,n)n=l, . . . ,  (gl,n)n=l 

in G such that gi,n E Fn+l and -1 gi,ngj,n ~ Fn whenever i ~ j ,  

max I#(Tg0., [A0]n N . . . N Tgz, ~ [Al]n) - #([A0]n). . .  p([Al]n)] < en 
Ao,...,Al 

for all n > I. Notice that for every n E N and 0 < j _< l, there exist unique 

fj ,n E Fn and hj,n E H,~ with gj,n = fj,nCn(hj,n). Moreover, h0,n # h2,n"" 7 ~ 
hl,n. Then slightly modifying the argument in (I), we compute 

I-t( Tgo, ~ [A0]nN " " �9 N Tgl, ~ [Al]n ) 

(2.7) = IF! ~V~ (fo,nAogo M ' "  M fl ,nAlgl)d(AF,) I+1 (go, . . . ,  g~) 4-e~ 

I 

=~F,  (Ao) �9 -- AF, (At) + en = #([A0]n) ' ' '  #([A~]n) + e,. | 

To construct a weakly mixing rigid action of G we define another sequence 

(kn,sn-1)n>l.  When n is odd, we choose kn and s,~-i to satisfy the following 

weaker version of (2.4): 

(2.8) max I] dist 7rl,h8 n -- ~Fn X "~Fn II < s 
I~hEHn 

When n is even, we just set k ,  := kn-1 + 1 and Sn = l a .  Denote by T the 

(C, F)-action of G on (X, flB,~) associated with (k,~,Sn-1)~=l. 

THEOREM 2.5: T is weakly mixing and rigid. 

Proof: Take any sequence hn E H2n \ {1}. It follows from part (I) of the 
h oo proof of Theorem 2.4 and (2.8) that  the sequence (r - )) ,=1 is mixing for T. 

Clearly, it is also mixing for T x :Y. Hence T x T is ergodic, i.e. T is weakly 

mixing. 

Now take any sequence hn E H2n+I \ {1}. Notice that  (2.5) holds for any 

choice of (k,,  sn-1),~>l. Hence we deduce from (2.5) and the definition of ~'2,~+1 

that 

#(Tr N [B]2n+l) = A&,+~(A M B) = #([AN S]2,+i)  

for all subsets A, B C F2,+1. This plus (1.6) yield 

l i m  n B) = ,(A n B) 

for all A, B E fl~. This means that T is rigid. | 
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3. Self-joinings of  T 

This section is devoted entirely to the proof of the following theorem. 

THEOREM 3.1: The action T constructed in the previous section has MSJ. 

Proof: (I) We first show that  T has MS J2. Since T is weakly mixing, we need 

to establish that  

J~(T) = {#9"1 g �9 G} U {# x #}. 

Take any u �9 J~(T). Let 3n denote the sub-a-algebra of (T 9 x Tg)getn-invariant 

subsets. Then 31 D 32 D . . .  and ~n  3n ~--- {~, X x X}  (rood , ) .  Since there 

are only countably many cylinders, we deduce from the martingale convergence 

theorem that  for v-a.a. (x, x'), 

1 
(3.1) - T J )  . ( B  • B') 

gEFn-1 

as n ---* oc for any pair of cylinders B, B' C X.  Fix such a point (x, xP). It is 

called gene r i c  for (T • T, v). Given any n > O, we can write x and x' as infinite 

sequences 

x ( fn,dn+l,dn+2, . . )  and x' ' ' ' = . = (f~, dn+l, dn+2, . . . )  

with fn, f'n �9 F,  and di, d~ �9 Ci for all i > n. Recall that  fn := rod1"'" dn 
/ / .  I / -1 and f~ := f~d 1 .. d n. We set t n : :  f ~ f n  , n > O. Fix a pair of cylinders, say 

m-cylinders, B and B'.  If n > m and g �9 Fn then Tgx' = (gf~; d,+l , ,  dn+2 , I  . . . ) .  

Hence Tgx' �9 B' if and only if TgTt, x �9 B'. Therefore 

XB• (Tgx, Tgx') = XT~-~BnT;-~T~-~B, (X). 

Since x is generic for (T, #), it follows that  

lim 1 

aEF~ 

Therefore (3.1) yields 

1 
(3.2) limoo#Fn_----- ~ ~ # ( T g l B N T ~ Z T g * B ' ) = v ( B x B ' ) .  

gEF~-1 

Consider now two cases. If tn ~ Fn-1 for infinitely many n, then passing to the 

limit in (3.2) along this subsequence and making use of (2.6) we obtain that  

]~(B)#(B') = , ( B  x B'). Hence # x # = , .  If, otherwise, there exists N > 0 
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such that  tn �9 Fn-1,  i.e. dn = d~n, for all n > N, then x and x'  are T-orbit 

equivalent, t ,  = t y  and 

1 1 
~ F n - 1  E # ( T g  1BAT-1T-1R'~-tn 9 ~ J ~ F N  gEFNE # ( B A T g T t N I T g  1B') 

gC Fn-1 

= #(t~vl).(B X B ' ) .  

Passing to the limit in (3.1) we obtain that  u = #(t}l). .  

(II) Now we fix l > 1 and show that  T has MSJz+I. Take any joining u �9 

J[+t(T)  and fix a generic point ( x0 , . . . ,  xl) for (T •  x T ,  v). Define a partit ion 

P of { 0 , . . . , l }  by setting: il and i2 are in the same atom of P if xi~ and xi~ 

are T-orbit equivalent. As in (I), for any n, we can write 

xj  = ( f j ,n-1,  dj,~, d j , n + l , . . . )  �9 X n - 1 ,  j = O , . . . , l .  

Suppose first that  # P  -- l + 1, i.e. P is the finest possible. Then by the proof 

of (I), each 2-dimensional marginal of v is # • #. Since ~ l ( # C i )  -1 < c~ and 

# = AFo • AC, • Ac2 x . . . ,  it follows from the Borel-Cantelli lemma that  for 

u-a.a. (Y0,... ,Yl) E X/+1, 

~N > 0 such that  Yo# ~ Yl,i ~ "'" ~ Yl,~ whenever i > N, 

where yj# �9 Ci is the i-th coordinate of yj �9 F0 • C1 x C2 x . . . .  Hence 

without loss of generality we may assume that  this condition is satisfied for 

(x0,. ,xz). Thus, if we set tj,n := fj,nfO,n -1 -1 -1 �9 . = f j ,n- ldj ,ndo,n fO,n-1 then 
tj,~t~. 1 ~ Fn-1 whenever i r j .  Slightly modifying our reasoning in (I) and 

making use of (2.7) instead of (2.6) we now obtain 

v(Bo x . . .  x Bl) = lim E 
n - - - ~  O o  

gE F~- I 

= lim E 
n - - - ~ O O  

gEFn-1 

= lim E 
n - - - + O G  

XBox 

X B o  • . .  • ( T g x o ,  . . . , ) 

#(TgBo n T~,' TgB,  A . . . n Tt~) TgB, ) 
gEFn-1 

= , ( B o ) . . . , ( B z )  

for any (l + 1)-tuple of cylinders B 0 , . . . ,  Bl. Hence u = # • . . .  • #. 

Consider now the general case and put tj,n := fJ,nfi-~,~ for each j E p, p �9 P.  

Recall that  ip = minje p j .  Then 

)~Bo• xBI (TgXO, . . . , TgXl ) -~ [ I  )~Ap (Xip )' 
pEP 
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where Ap := njcpTtT)nTglBj. Notice that  the point (x,p)pep C X{'~IpeP} is 

generic for (T x . . .  x T ( # P  times), K), where ~ stands for the projection of L, 

onto X {~€ By the first part  of (II), ~ = # x . . .  x p ( # P  times). Hence 

1 
u(Bo x . . .  x Bt) = limoo #F~_---~ E XBox...xB,(Tgxo,... ,T~x,) 

gE F~- I 

1 
= nli~m~ :/r E l I  p(Ap). 

gcF~_~ pEP 

As in (I), a 'stabilization' property holds: there exists M > 0 such that  tj,n = 

t j ,M for all n > M. 

subordinated. Hence 

~ ' (Bo  x . . .  x B I )  - 

t--1 We now set g := (t~,lM,..., l,M)" Clearly, g is P-  

gEFM pEP " jEp  

4. Uncountably many mixing actions with MSJ 

In this section the proof of Theorems 0.1(i) and 0.4 will be completed. We first 

apply Lemma 2.3 to construct kn+l and Sn,~g~ E F H~ in such a way that  (2.4) 

is satisfied for both sn and ~'n and, in addition, 

(4.1) [[ dist (sn(hk),~n(hk')) - AF~ x AFn[[ < en 
hEHn 

for all k, k r E Hn. Next, given a C {0, 1} N and n E N, we define Sn~: H,~ ~ F~ 

by setting 
a f S n if a(n) = O, 

S n = ~ s n  i f a ( n ) = l .  

Now we denote by T ~ the (C, F)-action of G associated with (kn, s~_l)n~=l �9 Let 

E be an uncountable subset of {0, 1} N such that  for any a, a r C E, the subset 

{n e N I a(n) r a ' (n)} is infinite. 

THEOREM 4.1:  

(i) For any a C {0, 1} N, the action T a is mixing and has MSJ. 

(ii) If  a, a' E E and a r ~' then T ~ and T ~' are disjoint. 

Proof: (i) follows from the proof of Theorem 3.1, since (2.4) is satisfied for s~ 

for all a e {0, 1} N and n E N. 

(ii) Let u E Je(T~,T~'). Take a generic point (x,x') for (T ~ • T ~ ' , , ) .  

Consider any n such that  a(n) r a'(n). Then we can write x and x'  as infinite 
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! ! ! 
sequences x = (fn, dn+l, dn+2,. . . )  and x' = (f~, dn+l, dn+2,...) with fn, ]~ ~ 
Fn and dm, d~m C Cm for all m > n. Take any g C Fn+I. Then we have the 

following expansions: 

I C r t  I / 
g -= hen(h), dn+l = San(hn)r and dn+ 1 = s n (hn)r 

for some uniquely determined a �9 F~ and h, hn, htn �9 Hn. Since 

gfndn+] = afns~(hn)s~(hhn)-lcn+l(hhn) and 
I I t a ~ I a ~ I - 1  r 

gfndn+l = afns n (hn)sn (hhn) Cn+l(hhn), 

the following holds for any pair of subsets A, A ~ C Fn: 

#{g  �9 Fn+I] (T;x,  Ty'x') �9 [A]~ x [A']~} 

# F n + I  

1 #{h  �9 Hnl afns~(hn)s~(hh~) -1 �9 A, , a' , a'  , - 1  af~sn (h~)sn (hhn) �9 A'} 

aE F~ 
#Hn 

1 f n ~ n  ( n ) ) ,  - #Fn E ~n(A-lafns~(hn) x A ' - l a  ' ~ '  h' 
aE Fn 

where ~n : =  diStheHn (s~(hhn), s~'(hh~n)). This and (4.1) yield 

~ { g  e F n + l l  (T~x, Tg'x') �9 l A I n  X [A ' ]n}  
= AFn(A)AFn(A') • ~n 

(4.2) •Fn+I 

= #([Aln)#([A'ln) =l= en. 

Since (x, x') is generic for (T r x T ~ v) and (4.2) holds for infinitely many n, 

we deduce that u = # x #. I 

By refining the above argument the reader can strengthen Theorem 0.1 (i) as 

follows: there exists an uncountable family of mixing (of any order) rank-one 

G-actions with MSJ such that any finite subfamily of it is disjoint. 

5. O n  G-act ions  w i t h  M S J  

It follows immediately from Definition 0.2 that  if T has MS J2 then the centralizer 

C(T) of T is 'trivial', i.e. C(T) = {Tg I g C C(G)}, where C(G) denotes the 

center of G. Moreover, we will show that T has trivial product centralizer (as 

D. Rudolph did in [Ru] for Z-actions). 

Let (X l, ~| denote the /-fold Cartesian product of (X, ~ , # , T ) .  

Given a permutation a of {1 , . . . ,  l} and g l , . . . ,  gn E C(T), we define a trans- 

formation Ua,gl ..... g~ of (X z, ~ |  #l, T(0) by setting 

Va,gz ..... g, ( X l , . . . ,  x l )  : =  ( T g z x a ( 1 ) , . . . ,  Tg, x a ( l ) ) .  
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Of course, U~,91 ..... gt E C(T(O). We show that  for the actions with MS J, the 

converse also holds. 

PROPOSITION 5.1: I f T  has MSJ then, for any I E N, each element of C(T  (0) 

equals to  U~,g 1 . . . . .  g[ for some permutation a and elements g l , . . . ,  gl C C(G). 

Proob Let S E C(T(O). We define an ergodic 2-fold self-joining u of T q) by 

setting u(A • B) := #l(A N S -1B)  for all A, B E ~| Notice that  u �9 J~l(T). 

Since T has MSJ2I, there exists a parti t ion P of { 1 , . . . ,  21) and a P-subordinated 

element g = (91 , . . . ,  g21) �9 FC(G) 2l such that  

1 ( ) 
(5.1) p ( n l  x . . .  X n2l ) -- ~/=g.2~ E H ~ D Th~Ai 

(hl,...,h2t)Eg "21 pEP iEp 

for all subsets A1,. . . ,A21 �9 ~ .  Substituting at first A1 . . . . .  Az = X and 

then Az+I . . . . .  A2t = X in (5.1), we derive that  # P  = l, # p  = 2 for all 

p �9 P and #g.2Z = 1. Hence g l , . . . ,  g21 �9 C(G) and there exists a bijection a of 

{1 , . . . ,  l} such that  P = {{i, a(i) + 1}] i = 1 , . . . ,  l}. Therefore it follows from 

(5.1) that  

S-I(AI+I x . . .  • A2l) = Tg,+xAI+r x . . .  x Tg2lAl+a(1). | 

As a simple corollary we derive that  if T has MSJ then the G-actions 

T, T(2) , . . .  and T • T • -. .  are pairwise non-isomorphic. 

After this paper was submitted the author introduced a companion to MSJ 

concept of near simplicity for actions of locally compact second countable groups 

IDa3]. As appeared, this concept is more general than the simplicity in the 

sense of A. del Junco and D. Rudolph [JuR] even for Z-actions. For instance, 

there exist near simple transformations which are disjoint from all del Junco-  

Rudolph's simple ones. It is shown in [Da3] that  an analogue of Veech's theorem 

on the structure of factors holds for this extended class of simple actions. In 

particular, if T has MS J2, then for every non-trivial factor ~ of T there exists a 

compact normal subgroup K of G such that  

= F i x K  := {A E ~1 #(TkAAA)  = 0 for all k e K}. 

Thus if T has MS J2 then T is effectively prime, i.e. T has no effective factors. 

(Recall that  a G-action Q is called effective if Qg # Id for each g ~ l a . )  
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