MIXING RANK-ONE ACTIONS FOR INFINITE SUMS OF FINITE GROUPS

BY

ALEXANDRE [. DANILENKO*

Institute for Low Temperature Physics & Engineering of Ukrainian National Academy of Sciences 47 Lenin Ave., Kharkov, 61164, Ukraine e-mail: danilenko@ilt.kharkov.ua

ABSTRACT

Let G be a countable direct sum of finite groups. We construct an uncountable family of pairwise disjoint mixing (of any order) rank-one strictly ergodic free actions of G on a Cantor set. All of them possess the property of minimal self-joinings (of any order). Moreover, an example of rigid weakly mixing rank-one strictly ergodic free G-action is given.

0. Introduction and definitions

This paper was inspired by the following question of D. Rudolph:

QUESTION: *Which countable discrete amenable* groups G have mixing *(funny)* rank-one *free actions?*

Recall that a measure preserving action $T = (T_q)_{q \in G}$ of G on a standard probability space (X, \mathfrak{B}, μ) is called

- **-- mixing** if $\lim_{q\to\infty} \mu(A \cap T_q B) = \mu(A)\mu(B)$ for all $A, B \in \mathfrak{B}$,
- **-- mixing of order** l if for any $\epsilon > 0$ and $A_0, \ldots, A_l \in \mathfrak{B}$, there exists a finite subset $K \subset G$ such that

$$
|\mu(T_{g_0}A_0\cap\cdots\cap T_{g_l}A_l)-\mu(A_0)\cdots\mu(A_l)|<\epsilon
$$

for each collection $g_0, \ldots, g_l \in G$ with $g_i g_i^{-1} \notin K$ if $i \neq j$,

^{*} The work was supported in part by CRDF, grant UM1-2546-KH-03. Received March 1, 2005 and in revised form August 9, 2005

- **--** weakly mixing if the diagonal action $T \times T := (T_g \times T_g)_{g \in G}$ of G on the product space $(X \times X, \mathfrak{B} \otimes \mathfrak{B}, \mu \times \mu)$ is ergodic,
- $-$ **totally ergodic** if every co-finite subgroup in G acts ergodically,
- **-- rigid** if there exists a sequence $g_n \to \infty$ in G such that

$$
\lim_{n \to \infty} \mu(A \cap T_{g_n} B) = \mu(A \cap B) \quad \text{for all } A, B \in \mathfrak{B}.
$$

We say that T has funny rank one if there exist a sequence of measurable subsets $(A_n)_{n=1}^{\infty}$ in X and a sequence of finite subsets $(F_n)_{n=1}^{\infty}$ in G such that the subsets T_gF_n , $g \in F_n$, are pairwise disjoint for any n and

$$
\lim_{n\to\infty}\min_{H\subset F_n}\mu\bigg(B\triangle\bigsqcup_{g\in H}T_gA_n\bigg)=0\quad\text{for every }B\in\mathfrak{B}.
$$

If, moreover, $(F_n)_{n=1}^{\infty}$ is a subsequence of some 'natural' Følner sequence in G, we say that T has rank one. For instance, if $G = \mathbb{Z}^d$, this 'natural sequence' is just the sequence of cubes; if $G = \sum_{i=1}^{\infty} G_i$ with every G_i a finite group, the sequence $\sum_{i=1}^n G_i$ is 'natural', etc.

Up to now various examples of mixing rank-one actions were constructed for $-G = \mathbb{Z}$ in [Or], [Ru], [Ad], [CrS], etc.,

- $-G = \mathbb{Z}^2$ in [AdS],
- $-G = \mathbb{R}$ in [Pr], [Fa],
- $-G = \mathbb{R}^{d_1} \times \mathbb{Z}^{d_2}$ in [DaS].

We also mention two more constructions of rank-one actions for

- $-G = \mathbb{Z} \oplus \bigoplus_{n=1}^{\infty} \mathbb{Z}/2\mathbb{Z}$ in [Ju], where it was claimed that the Z-subaction is mixing but it was only shown that it is weakly mixing, and
- $-G$ is a countable Abelian group with a subgroup \mathbb{Z}^d such that the quotient G/\mathbb{Z}^d is locally finite in [Ma], where it was proved that a Z-subaction is mixing and it was asked whether the whole action is mixing.

Notice that in all of these examples G is Abelian and has elements of infinite order. In contrast to that we provide a different class of groups for which the answer to the question of D. Rudolph is affirmative.

THEOREM 0.1: Let $G = \bigoplus_{i=1}^{\infty} G_i$, where G_i is a non-trivial finite group for every i.

- (i) There exist uncountably many pairwise disjoint (and hence pairwise non*isomorphic) mixing rank-one strictly ergodic actions of G on a Cantor set. Moreover,* these *actions* are *mixing of any* order.
- (ii) There *exists a weakly mixing rigid (and hence non-mixing) rank-one strictly ergodic action of G on a Cantor set.*

Concerning (i), it is noteworthy that any mixing rank-one Z-action is mixing of any order by [Ka] and [Ry] (see also an extension of that to actions of some Abelian groups with elements of infinite order in [JuY]). We do not know whether this fact holds for all mixing rank-one action of countable sums of finite groups.

To prove the theorem, we combine the original Ornstein's idea of 'random spacer' (in the cutting-and-stacking construction process) [Or] and the more recent (C, F) -construction developed in [Ju], [Da1], [Da2], [DaS1], [DaS2] to produce funny rank-one actions with various dynamical properties. However, unlike all of the known examples of (C, F) -actions, the actions in this paper are constructed without adding any spacer (cf. with [Ju], where all the spacers relate to \mathbb{Z} -subaction only). Instead of that on the *n*-th step we just cut the n -'column' into 'subcolumns' and then rotate each 'subcolumn' in a 'random way'. In the limit we obtain a topological G-action on a compact Cantor space.

Our next concern is to describe all ergodic self-joinings of the G-actions constructed in Theorem 0.1. Recall a couple of definitions.

Given two ergodic G-actions T and T' on (X, \mathfrak{B}, μ) and $(X', \mathfrak{B}', \mu')$ respectively, we denote by $J(T, T')$ the set of joinings of T and T', i.e. the set of $(T_g \times T'_g)_{g \in G}$ -invariant measures on $\mathfrak{B} \otimes \mathfrak{B}'$ whose marginals on \mathfrak{B} and \mathfrak{B}' are μ and μ' respectively. The corresponding dynamical system $(X \times X', \mathfrak{B} \otimes \mathfrak{B}', \mu \times \mu')$ is also called a joining of T and T'. By $J^e(T,T') \subset J(T,T')$ we denote the subset of ergodic joinings of T and T' (it is never empty). In a similar way one can define the joininings $J(T_1,\ldots,T_l)$ for any finite family T_1,\ldots,T_l of G-actions. If $J(T_1,...,T_l) = {\mu_1 \times \cdots \times \mu_l}$ then the family $T_1,...,T_l$ is called **disjoint**. If $T_1 = \cdots = T_l$ we speak about *l*-fold self-joinings of T_1 and use notation $J_l(T)$ for $J(T, \ldots, T)$. For $g \in G$, we denote by g^{\bullet} the conjugacy class of g. We l times

also let

$$
\mathrm{FC}(G) := \{ g \in G \mid g^{\bullet} \text{ is finite} \}.
$$

Clearly, $FC(G)$ is a normal subgroup of G. If G is Abelian or G is a sum of finite groups then $FC(G) = G$. For any $g \in FC(G)$, we define a measure $\mu_{q^{\bullet}}$ on $(X \times X, \mathfrak{B} \otimes \mathfrak{B})$ by setting

$$
\mu_{g^{\bullet}}(A \times B) := \frac{1}{\#g^{\bullet}} \sum_{h \in g^{\bullet}} \mu(A \cap T_h B).
$$

It is easy to verify that $\mu_{g^{\bullet}}$ is a self-joining of T. Moreover, the map $(x, T_h^{-1}x) \mapsto$ (x, h) is an isomorphism of $(X \times X, \mu_{g^{\bullet}}, T \times T)$ onto $(X \times g^{\bullet}, \mu \times \nu, \widetilde{T})$, where ν is the equidistribution on g^{\bullet} and the G-action $\widetilde{T} = (\widetilde{T}_t)_{t \in G}$ is given by

$$
\widetilde{T}_t(x,h)=(T_tx,tht^{-1}),\quad x\in X,\ h\in g^{\bullet}.
$$

It follows that \widetilde{T} (and hence the self-joining $\mu_g \bullet$ of T) is ergodic if and only if the action $(T_t)_{t \in C(g)}$ is ergodic, where $C(g) = \{t \in G | t g = gt\}$ stands for the centralizer of g in G. Notice also that $C(g)$ is a co-finite subgroup of G because of $g \in \mathrm{FC}(G)$. Hence $\{\mu_{q^{\bullet}} | g \in \mathrm{FC}(G)\} \subset J_2^e(T)$ whenever T is totally ergodic. *Definition 0.2:* If $J_2^e(T) \subset {\mu_{g^{\bullet}} | g \in FC(G)} \cup {\mu \times \mu}$ then we say that T has 2-fold minimal self-joinings (MSJ_2) .

This definition extends naturally to higher order self-joinings as follows. Given $l \geq 1$ and $g \in G^{l+1}$, we denote by $g^{\bullet l}$ the orbit of g under the G-action on G^{l+1} by conjugations:

$$
h\cdot (g_0,\ldots,g_l):=(hg_0h^{-1},\ldots,hg_lh^{-1}).
$$

Let P be a partition of $\{0,\ldots,l\}$. For an atom $p \in P$, we denote by i_p the minimal element in p. We say that an element $g = (g_0, \ldots, g_l) \in FC(G)^{l+1}$ is P-subordinated if $g_{i_p} = 1_G$ for all $p \in P$. For any such g, we define a measure $\mu_{a^{*l}}$ on $(X^{l+1}, \mathfrak{B}^{\otimes (l+1)})$ by setting

$$
\mu_{g^{\bullet l}}(A_0 \times \cdots \times A_l) := \frac{1}{\# g^{\bullet l}} \sum_{(h_0, \ldots, h_l) \in g^{\bullet l}} \prod_{p \in P} \mu \bigg(\bigcap_{i \in p} T_{h_i} A_i \bigg).
$$

It is easy to verify that $\mu_{g^{\bullet l}}$ is an $(l + 1)$ -fold self-joining of T. Reasoning as above one can check that $\mu_{g^{\bullet l}}$ is ergodic whenever T is weakly mixing.

Definition 0.3: We say that T has $(l+1)$ -fold minimal self-joinings (MSI_{l+1}) if

 $J_{l+1}^{e}(T) \subset {\mu_{a^{el}}} | g$ is P-subordinated for a partition P of ${0, \ldots, l}$.

If T has MSJ_i for any $l > 1$, we say that T has MSJ.

In case G is Abelian, these definitions agree with the common now-definitions of MSJ_{l+1} and MSJ by A. del Junco and D. Rudolph [JuR] who considered self-joinings $\mu_{g^{\bullet l}}$ only when g belongs to the center of G^{l+1} . However, we find their definition somewhat restrictive for non-commutative groups since, for instance, countable sums of non-commutative finite groups can never have actions with $MSJ₂$ in their sense.

Now we record the second main result of this paper.

THEOREM 0.4: *The actions constructed in Theorem O.l(i) a11 have MSJ.*

We notice that a part of the analysis from [Ru] can be carried over to the case of G-actions with MSJ. In this paper we only show that such actions have trivial *product centralizer.* Moreover, as follows from [Da3], every G-action with MS J2 is *effectively prime,* i.e. has no factors except for the obvious ones: the sub- σ -algebras of subsets fixed by finite normal subgroups in G. In particular, there exist no free factors.

We now briefly summarize the organization of the paper. In Section 1 we outline the (C, F) -construction of rank-one actions as it appeared in [Da1]. In Section 2, for any countable sum G of finite groups, we construct a (C, F) -action T of G which is mixing of any order. A rigid weakly mixing action of G also appears there. In Section 3 we demonstrate that T has MSJ. In Section 4 we show how to perturb the construction of T to obtain an uncountable family of pairwise disjoint mixing rank-one G-actions with MSJ. In the final Section 5 we discuss some implications of MSJ: trivial centralizer, trivial product centralizer and effective primality.

ACKNOWLEDGEMENT: The author thanks the referee for the useful suggestions that improved the paper. In particular, in the present proof of Theorem 0.4 we deduce MSJ_i from the *l*-fold mixing (as J. King does for \mathbb{Z} -actions in [Ki]). Our original proof (independent of multiple mixing) was longer and noticeably more complicated.

1. (C, F) -construction

In this section we recall the (C, F) -construction of rank-one actions.

From now on $G = \sum_{i=1}^{\infty} G_i$, where G_i is a non-trivial finite group for each $i \geq 1$. To construct a probability preserving (C, F) -action of G (see [Ju], [Da1], [DaS2]) we need to define two sequences $(F_n)_{n>0}$ and $(C_n)_{n>1}$ of finite subsets in G such that the following are satisfied:

(1.1) $(F_n)_{n\geq 0}$ is a Folner sequence in $G, F_0 = \{1_G\},\$

$$
(1.2) \tFnCn+1 \subset Fn+1, Cn+1 > 1,
$$

(1.3)
$$
F_n c \cap F_n c' = \emptyset \text{ for all } c \neq c' \in C_{n+1},
$$

$$
(1.4) \qquad \lim_{n \to \infty} \frac{\#F_n}{\#C_1 \cdots \#C_n} < \infty.
$$

Suppose that an increasing sequence of integers $0 < k_1 < k_2 < \cdots$ is given. Then we define $(F_n)_{n\geq 0}$ by setting $F_0 := \{1_G\}$ and $F_n := \sum_{i=1}^{k_n} G_i$ for $n \geq 1$. Clearly, (1.1) is satisfied. Suppose now that we are also given a sequence of maps $s_n: H_n \to F_n$, where $H_0 := \sum_{i=1}^{k_1} G_i$ and $H_n := \sum_{i=k_n+1}^{k_{n+1}} G_i$ for $n \geq 1$. Then we define two sequences of maps $c_{n+1}, \phi_n: H_n \to F_{n+1}$ by setting $\phi_n(h) := (0,h)$ and $c_{n+1}(h) := (s_n(h), h)$. Finally, we let $C_{n+1} := c_{n+1}(H_n)$ for all $n \ge 0$. It is easy to verify that (1.2) – (1.4) are all fulfilled. Moreover, a stronger version of (1.2) holds:

$$
(1.5) \t\t FnCn+1 = Fn+1.
$$

We now put $X_n := F_n \times C_{n+1} \times C_{n+2} \times \cdots$ and define a map $i_n: X_n \to X_{n+1}$ by setting

$$
i_n(f_n,d_{n+1},d_{n+2},\ldots):=(f_nd_{n+1},d_{n+2},\ldots).
$$

Clearly, X_n is a compact Cantor space. It follows from (1.5) and (1.3) that i_n is well defined and it is a homeomorphism of X_n onto X_{n+1} . Denote by X the topological inductive limit of the sequence $(X_n, i_n)_{n=1}^{\infty}$. As a topological space X is canonically homeomorphic to any X_n and in the sequel we will often identify X with X_n suppressing the canonical identification maps. We need the structure of inductive limit to define the (C, F) -action T on X as follows. Given $g \in G$, consider any $n \geq 0$ such that $g \in F_n$. Every $x \in X$ can be written as an infinite sequence $x = (f_n, d_{n+1}, d_{n+2},...)$ with $f_n \in F_n$ and $d_m \in C_m$ for $m > n$ (i.e. we identify X with X_n). Now we put

$$
T_gx := (gf_n, d_{n+1}, d_{n+2}, \ldots) \in X_n.
$$

It is easy to verify that T_q is a well defined homeomorphism of X. Moreover, $T_gT_{g'} = T_{gg'}$, i.e. $T := (T_g)_{g \in G}$ is a topological action of G on X.

Definition 1.1: We call T the (C, F) -action of G associated with the sequence $(k_n, s_{n-1})_{n=1}^\infty$.

We list without proof several properties of T . They can be verified easily by the reader (see also [Dal]).

- **--** T is a minimal uniquely ergodic (i.e. strictly ergodic) free action of G.
- *....* Two points $x = (f_n, d_{n+1}, d_{n+2},...)$ and $x = (f'_n, d'_{n+1}, d'_{n+2},...) \in X_n$ are T-orbit equivalent if and only if $d_i = d'_i$ eventually (i.e. for all large enough i). Moreover, $x' = T_g x$ if and only if

$$
g = \lim_{i \to \infty} f'_n d'_{n+1} \cdots d'_{n+i} d_{n+i}^{-1} \cdots d_{n+1}^{-1} f_n^{-1}.
$$

-- The only T-invariant probability measure μ on X is the product of the equidistributions on F_n and C_{n+i} , $i \in \mathbb{N}$ (if X is identified with X_n).

For each $A \subset F_n$, we let $[A]_n := \{x = (f_n, d_{n+1}, \ldots) \in X_n | f_n \in A\}$ and call it an n -cylinder. The following holds:

$$
[A]_n \cap [B]_n = [A \cap B]_n, \text{ and } [A]_n \cup [B]_n = [A \cup B]_n,
$$

\n
$$
[A]_n = \bigcup_{d \in C_{n+1}} [Ad]_{n+1},
$$

\n
$$
T_g[A]_n = [gA]_n \text{ if } g \in F_n,
$$

\n
$$
\mu([Ad]_{n+1}) = \frac{1}{\#C_{n+1}} \mu([A]_n) \text{ for any } d \in C_{n+1},
$$

\n
$$
\mu([A]_n) = \lambda_{F_n}(A),
$$

where λ_{F_n} is the normalized Haar measure on F_n . Moreover, for each measurable subset $B \subset X$,

(1.6)
$$
\lim_{n \to \infty} \min_{A \subset F_n} \mu(B \triangle [A]_n) = 0.
$$

Hence T has rank one.

2. Mixing (C, F)-actions

Our purpose in this section is to construct a rank-one action of G which is mixing of any order. This action will appear as a (C, F) -action associated with some specially selected sequence $(k_n, s_{n-1})_{n>1}$. We first state several preliminary results.

Given finite sets A and B and a map $x \in A^B$, we denote by dist x or dist_{beB} $x(b)$ the measure $(\#B)^{-1} \sum_{b \in B} \chi_{x(b)}$ on A. Here $\chi_{x(b)}$ stands for the probability supported at the point $x(b)$.

LEMMA 2.1: Let A be a finite set and let λ be the equidistribution on A. Then *for any* $\epsilon > 0$ *there exist* $c > 0$ *and* $m \in \mathbb{N}$ *such that for any finite set B with* $\#B > m$,

$$
\lambda^B(\{x \in A^B \mid \|\text{ dist } x - \lambda\| > \epsilon\}) < e^{-c\#B}.
$$

For the proof we refer to [Or] or [Ru]. We will also use the following combinatorial lemma.

LEMMA 2.2: For any $l \in \mathbb{N}$, let $N_l := 3^{l(l-1)/2}$ and $\delta_l := 5^{-l(l-1)/2}$. Let H be *a finite group. Then for any family* h_1, \ldots, h_l *of mutually different elements of H* and any subset $B \subset H$ with $\#B > 3/\delta_l$, there exists a partition of B into *subsets* B_i , $1 \le i \le N_i$, such that the subsets $h_1B_i, h_2B_i, \ldots, h_lB_i$ are mutually *disjoint and* $#B_i \geq \delta_i \# B$ *for any i.*

348 **A.I. DANILENKO** Isr. J. Math.

Proof: We leave to the reader the simplest case when $l = 2$. Hint: assume that $h_1 = 1_H$ and consider the partition of H into the right cosets by the cyclic group generated by h_2 .

Suppose that we have already proved the assertion of the lemma for some l and we want to prove it for $l + 1$. Take any $h_1 \neq h_2 \neq \cdots \neq h_{l+1} \in H$ (in such a way we denote mutually different elements of H). Given a subset $B \subset H$ with $\#B > 3/\delta_l$, we first partition B into subsets B_i , $1 \leq i \leq N_l$, such that the subsets $h_2B_i, h_3B_i, \ldots, h_{l+1}B_i$ are mutually disjoint and $#B_i \geq \delta_l \# B \geq 3 \cdot 5^l$. For every *i*, there exists a partition $B_i = \bigsqcup_{i=1}^3 B_{i,i_1}$ such that $h_1 B_{i,i_1} \cap h_2 B_{i,i_1} =$ \emptyset and $\#B_{i,i_1}\geq 0.2\#B_i, 1\leq i_1\leq 3$. Next, we partition every B_{i,i_1} into 3 subsets B_{i,i_1,i_2} such that $h_1B_{i,i_1,i_2} \cap h_3B_{i,i_1,i_2} = \emptyset$ and $\#B_{i,i_1,i_2} \geq 0.2\#B_{i,i_1}, 1 \leq i_2 \leq 3$, and so on. Finally, we obtain a partition

$$
B = \bigsqcup_{i=1}^{N_l} \bigsqcup_{i_1, \dots, i_l=1}^{3} B_{i, i_1, \dots, i_l}
$$

which is as desired.

Given a finite set A, a finite group H and elements $h_1, \ldots, h_l \in H$, we denote by $\pi_{h_1,...,h_l}$ the map $A^H \to (A^l)^H$ given by

$$
(\pi_{h_1,\ldots,h_l}x)(k)=(x(h_1k),\ldots,x(h_lk)).
$$

For $x \in A^H$, we define $x^* \in A^H$ by setting $x^*(h) := x(h^{-1}), h \in H$.

LEMMA 2.3: Given $l \in \mathbb{N}$ and $\epsilon > 0$, there exists $m \in \mathbb{N}$ such that for any finite *group H with* $#H > m$ *, one can find* $s \in A^H$ *such that*

$$
(2.1) \qquad \|\operatorname{dist} \pi_{h_1,\ldots,h_l} s - \lambda^l\| < \epsilon \quad \text{and} \quad \|\operatorname{dist} \pi_{h_1,\ldots,h_l} s^* - \lambda^l\| < \epsilon
$$

for all $h_1 \neq h_2 \neq \cdots \neq h_l \in H$.

Proof: Take any finite group H and set

$$
B_H := \bigcup_{h_1 \neq \dots \neq h_l \in H} \{x \in A^H \mid \|\operatorname{dist} \pi_{h_1, \dots, h_l} x - \lambda^l\| > \epsilon\}.
$$

To prove the left hand side inequality in (2.1) it suffices to show that $\lambda^H(B_H)$ < 1 whenever $\#H$ is large enough. Moreover, since the map $A^H \ni x \mapsto x^* \in A^H$ preserves the measure λ^H , the right hand side inequality in (2.1) will follow from the left hand side one if we prove that $\lambda^H(B_H) < 0.5$.

Fix $h_1 \neq \cdots \neq h_l \in H$ and apply Lemma 2.2 to partition H into subsets H_i , $1 \leq i \leq N_l$, such that

(2.2) $\#H_i \geq \delta_l \#H$ and

(2.3) the subsets h_1H_i,\ldots,h_lH_i are mutually disjoint

for every *i*. Denote by $r_i: (A^l)^H \to (A^l)^{H_i}$ the natural restriction map. Then we deduce from (2.3) that $r_i \circ \pi_{h_1,\dots,h_l}$ maps λ^H onto $(\lambda^l)^{H_i}$. Since dist $\pi_{h_1,\dots,h_l} x =$ $\sum_i(\#H_i/\#H)\cdot \text{dist}(r_i \circ \pi_{h_1,...,h_l})x$, it follows that

$$
\lambda^H(\{x \in A^H \mid \|\operatorname{dist}\pi_{h_1,\dots,h_l}x - \lambda^l\| > \epsilon\})
$$

\n
$$
\leq \sum_i \lambda^H(\{x \in A^H \mid \|\operatorname{dist}(r_i \circ \pi_{h_1,\dots,h_l})x - \lambda^l\| > \epsilon\})
$$

\n
$$
= \sum_i (\lambda^l)^{H_i} (\{y \in (A^l)^{H_i} \mid \|\operatorname{dist} y - \lambda^l\| > \epsilon\}).
$$

By Lemma 2.2 and (2.2), there exists $c > 0$ such that if $#H$ is large enough then the *i*-th term in the latter sum is less than $e^{-c\#H_i} < e^{-c\delta_i\#H}$. Hence

$$
\lambda^H(B_H) \le N_l \binom{\#H}{l} e^{-c\delta_l \#H}
$$

and the assertion of the lemma follows.

Now we are ready to define the sequence $(k_n, s_{n-1})_{n\geq 1}$. Fix a sequence of positive reals $\epsilon_n \to 0$. On the first step one can take arbitrary k_1 and s_0 . Suppose now---on the *n*-th step---we already have k_n and s_{n-1} and we want to define k_{n+1} and s_n . For this, we apply Lemma 2.3 with $A := F_n$, $l := n$ and $\epsilon := \epsilon_n$ to find k_{n+1} large so that there exists $s_n \in A^{H_n}$ satisfying

$$
(2.4) \t\t ||\operatorname{dist} \pi_{h_1,\ldots,h_n} s_n - (\lambda_{F_n})^n || < \epsilon_n \text{ for all } h_1 \neq \cdots \neq h_n \in H_n.
$$

Recall that $H_n := \sum_{i=k_n+1}^{k_{n+1}} G_i$ *and* $F_n := \sum_{i=1}^{k_n} G_i$ *for* $n \geq 1$ *. Without loss of* generality we may also assume that $k_{n+1} - k_n \geq n$ and hence $\sum_{n=1}^{\infty} (\#H_n)^{-1}$ $<\infty$.

Denote by T the (C, F) -action of G on (X, \mathfrak{B}, μ) associated with $(k_n, s_{n-1})_{n=1}^{\infty}$. THEOREM 2.4: *T* is mixing of any order.

Proof: (I) We first show that T is mixing (of order 1). Recall that a sequence $g_n \to \infty$ in G is called **mixing for** T if

$$
\lim_{n \to \infty} \mu(T_{g_n} B_1 \cap B_2) = \mu(B_1) \mu(B_2) \quad \text{for all } B_1, B_2 \in \mathfrak{B}.
$$

350 **A.I. DANILENKO** Isr. J. Math.

Clearly, T is mixing if and only if any sequence going to infinity in G contains a mixing subsequence. Since every subsequence of a mixing sequence is mixing itself, to prove (I) it suffices to show that every sequence $(g_n)_{n=1}^{\infty}$ in G with $g_n \in F_{n+1} \backslash F_n$ for all *n* is mixing. Notice first that there exist (unique) $f_n \in F_n$ and $h_n \in H_n \setminus \{1\}$ with $g_n = f_n \phi_n(h_n)$. Fix any two subsets $A, B \subset F_n$. We notice that for each $h \in H_n$,

$$
g_n A c_{n+1}(h) = f_n A s_n(h) \phi_n(h_n h) = f_n A s_n(h) s_n(h_n h)^{-1} c_{n+1}(h_n h)
$$

and $f_n As_n(h)s_n(h_nh)^{-1} \subset F_n$. Hence

$$
\mu(T_{g_n}[A]_n \cap [B]_n) = \sum_{h \in H_n} \mu(T_{g_n}[Ac_{n+1}(h)]_{n+1} \cap [B]_n)
$$

\n
$$
= \sum_{h \in H_n} \mu([f_nAs_n(h)s_n(h_n h)^{-1}c_{n+1}(h_n h)]_{n+1} \cap [B]_n)
$$

\n(2.5)
\n
$$
= \sum_{h \in H_n} \mu([(f_nAs_n(h)s_n(h_n h)^{-1} \cap B)c_{n+1}(h_n h)]_{n+1})
$$

\n
$$
= \frac{1}{\#H_n} \sum_{h \in H_n} \mu([f_nAs_n(h)s_n(h_n h)^{-1} \cap B]_n)
$$

\n
$$
= \frac{1}{\#H_n} \sum_{h \in H_n} \lambda_{F_n}(f_nAs_n(h) \cap Bs_n(h_n h)).
$$

We define a map $r_{A,B}: F_n \times F_n \to \mathbb{R}$ by setting

$$
r_{A,B}(g,g'):=\lambda_{F_n}(f_nAg\cap Bg').
$$

Then it follows from (2.5) and (2.4) that

$$
\mu(T_{g_n}[A]_n \cap [B]_n) = \int_{F_n \times F_n} r_{A,B} d(\text{dist } \pi_{1,h_n} s_n)
$$

\n
$$
= \int_{F_n \times F_n} r_{A,B} d\lambda_{F_n \times F_n} \pm \epsilon_n
$$

\n
$$
= \int_{F_n \times F_n} \lambda_{F_n}(f_n Ag \cap Bg') d\lambda_{F_n}(g) d\lambda_{F_n}(g') \pm \epsilon_n
$$

\n
$$
= \lambda_{F_n}(A) \lambda_{F_n}(B) \pm \epsilon_n
$$

\n
$$
= \mu([A]_n) \mu([B]_n) \pm \epsilon_n.
$$

Hence we have

(2.6)
$$
\max_{A, B \subset F_n} |\mu(T_{g_n}[A]_n \cap [B]_n) - \mu([A]_n) \mu([B]_n)| < \epsilon_n.
$$

This and (1.6) imply that the sequence $(g_n)_{n=1}^{\infty}$ is mixing.

(II) Now we fix $l > 1$ and prove that T is mixing of order l. To this end it is sufficient to show the following: given $l + 1$ sequences $(g_{0,n})_{n=1}^{\infty},\ldots,(g_{l,n})_{n=1}^{\infty}$ in G such that $g_{i,n} \in F_{n+1}$ and $g_{i,n}g_{i,n}^{-1} \notin F_n$ whenever $i \neq j$,

$$
\max_{A_0,...,A_l} |\mu(T_{g_{0,n}}[A_0]_n \cap \cdots \cap T_{g_{l,n}}[A_l]_n) - \mu([A_0]_n) \cdots \mu([A_l]_n)| < \epsilon_n
$$

for all $n > l$. Notice that for every $n \in \mathbb{N}$ and $0 \leq j \leq l$, there exist unique $f_{j,n} \in F_n$ and $h_{j,n} \in H_n$ with $g_{j,n} = f_{j,n}\phi_n(h_{j,n})$. Moreover, $h_{0,n} \neq h_{2,n} \cdots \neq$ $h_{1,n}$. Then slightly modifying the argument in (I) , we compute

$$
\mu(T_{g_{0,n}}[A_0]_n \cap \cdots \cap T_{g_{l,n}}[A_l]_n)
$$
\n
$$
(2.7) \qquad \qquad = \int_{F_n^l} \lambda_{F_n}(f_{0,n}A_0g_0 \cap \cdots \cap f_{l,n}A_lg_l)d(\lambda_{F_n})^{l+1}(g_0,\ldots,g_l) \pm \epsilon_n
$$
\n
$$
= \lambda_{F_n}(A_0) \cdots \lambda_{F_n}(A_l) \pm \epsilon_n = \mu([A_0]_n) \cdots \mu([A_l]_n) \pm \epsilon_n.
$$

To construct a weakly mixing rigid action of G we define another sequence $(\widetilde{k}_n, \widetilde{s}_{n-1})_{n\geq 1}$. When n is odd, we choose \widetilde{k}_n and \widetilde{s}_{n-1} to satisfy the following weaker version of (2.4):

(2.8)
$$
\max_{1 \neq h \in H_n} \|\text{dist } \pi_{1,h} s_n - \lambda_{F_n} \times \lambda_{F_n} \| < \epsilon_n
$$

When *n* is even, we just set $\widetilde{k}_n := \widetilde{k}_{n-1} + 1$ and $\widetilde{s}_n \equiv 1_G$. Denote by \widetilde{T} the (C, F) -action of G on $(\widetilde{X}, \widetilde{\mathfrak{B}}, \widetilde{\mu})$ associated with $(\widetilde{k}_n, \widetilde{s}_{n-1})_{n=1}^{\infty}$.

THEOREM 2.5: \widetilde{T} is weakly mixing and rigid.

Proof: Take any sequence $h_n \in H_{2n} \setminus \{1\}$. It follows from part (I) of the proof of Theorem 2.4 and (2.8) that the sequence $(\phi_{2n}(h_n))_{n=1}^{\infty}$ is mixing for \widetilde{T} . Clearly, it is also mixing for $\widetilde{T} \times \widetilde{T}$. Hence $\widetilde{T} \times \widetilde{T}$ is ergodic, i.e. \widetilde{T} is weakly mixing.

Now take any sequence $h_n \in H_{2n+1} \setminus \{1\}$. Notice that (2.5) holds for any choice of $(k_n, s_{n-1})_{n \geq 1}$. Hence we deduce from (2.5) and the definition of \tilde{s}_{2n+1} that

$$
\mu(\widetilde{T}_{\phi_{2n+1}(h_n)}[A]_{2n+1}\cap [B]_{2n+1})=\lambda_{F_{2n+1}}(A\cap B)=\mu([A\cap B]_{2n+1})
$$

for all subsets $A, B \subset F_{2n+1}$. This plus (1.6) yield

$$
\lim_{n\to\infty}\mu(\widetilde{T}_{\phi_{2n+1}(h_n)}\widetilde{A}\cap\widetilde{B})=\mu(\widetilde{A}\cap\widetilde{B})
$$

for all $\widetilde{A}, \widetilde{B} \in \widetilde{\mathfrak{B}}$. This means that \widetilde{T} is rigid.

3. Self-joinings of T

This section is devoted entirely to the proof of the following theorem.

THEOREM 3.1: *The action T constructed in* the *previous section has MSJ.*

Proof: (I) We first show that T has MSJ_2 . Since T is weakly mixing, we need to establish that

$$
J_2^e(T) = {\mu_{g^{\bullet}} | g \in G} \cup {\mu \times \mu}.
$$

Take any $\nu \in J_2^e(T)$. Let \mathfrak{F}_n denote the sub- σ -algebra of $(T_q \times T_q)_{q \in F_n}$ -invariant subsets. Then $\mathfrak{F}_1 \supset \mathfrak{F}_2 \supset \cdots$ and $\bigcap_n \mathfrak{F}_n = \{ \emptyset, X \times X \}$ (mod ν). Since there are only countably many cylinders, we deduce from the martingale convergence theorem that for ν -a.a. (x, x') ,

$$
(3.1) \quad E(\chi_{B \times B'} | \mathfrak{F}_{n-1})(x, x') = \frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \chi_{B \times B'}(T_g x, T_g x') \to \nu(B \times B')
$$

as $n \to \infty$ for any pair of cylinders $B, B' \subset X$. Fix such a point (x, x') . It is called **generic** for $(T \times T, \nu)$. Given any $n > 0$, we can write x and x' as infinite sequences

$$
x = (f_n, d_{n+1}, d_{n+2}, \ldots)
$$
 and $x' = (f'_n, d'_{n+1}, d'_{n+2}, \ldots)$

with $f_n, f'_n \in F_n$ and $d_i, d'_i \in C_i$ for all $i > n$. Recall that $f_n := f_0 d_1 \cdots d_n$ and $f'_n := f'_0 d'_1 \cdots d'_n$. We set $t_n := f'_n f_n^{-1}$, $n > 0$. Fix a pair of cylinders, say *m*-cylinders, *B* and *B'*. If $n > m$ and $g \in F_n$ then $T_g x' = (gf'_n, d'_{n+1}, d'_{n+2}, \ldots)$. Hence $T_g x' \in B'$ if and only if $T_g T_{t_n} x \in B'$. Therefore

$$
\chi_{B\times B'}(T_gx,T_gx')=\chi_{T_g^{-1}B\cap T_{t_n}^{-1}T_g^{-1}B'}(x).
$$

Since x is generic for (T, μ) , it follows that

$$
\lim_{l \to \infty} \frac{1}{\#F_l} \sum_{a \in F_l} \chi_{T_g^{-1}B \cap T_{t_n}^{-1}T_g^{-1}B'}(T_a x) = \mu(T_g^{-1}B \cap T_{t_n}^{-1}T_g^{-1}B').
$$

Therefore (3.1) yields

(3.2)
$$
\lim_{n \to \infty} \frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \mu(T_g^{-1}B \cap T_{t_n}^{-1}T_g^{-1}B') = \nu(B \times B').
$$

Consider now two cases. If $t_n \notin F_{n-1}$ for infinitely many n, then passing to the limit in (3.2) along this subsequence and making use of (2.6) we obtain that $\mu(B)\mu(B') = \nu(B \times B')$. Hence $\mu \times \mu = \nu$. If, otherwise, there exists $N > 0$ such that $t_n \in F_{n-1}$, i.e. $d_n = d'_n$, for all $n > N$, then x and x' are T-orbit equivalent, $t_n = t_N$ and

$$
\frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \mu(T_g^{-1}B \cap T_{t_n}^{-1}T_g^{-1}B') = \frac{1}{\#F_N} \sum_{g \in F_N} \mu(B \cap T_g T_{t_N}^{-1}T_g^{-1}B') \n= \mu_{(t_N^{-1})^\bullet}(B \times B').
$$

Passing to the limit in (3.1) we obtain that $\nu = \mu_{(t_{N}^{-1})\bullet}$.

(II) Now we fix $l > 1$ and show that T has MSJ_{l+1} . Take any joining $\nu \in$ $J_{l+1}^e(T)$ and fix a generic point (x_0,\ldots,x_l) for $(T\times\cdots\times T,\nu)$. Define a partition P of $\{0,\ldots,l\}$ by setting: i_1 and i_2 are in the same atom of P if x_{i_1} and x_{i_2} are T-orbit equivalent. As in (I) , for any n, we can write

$$
x_j = (f_{j,n-1}, d_{j,n}, d_{j,n+1}, \ldots) \in X_{n-1}, \quad j = 0, \ldots, l.
$$

Suppose first that $\#P = l + 1$, i.e. P is the finest possible. Then by the proof of (I), each 2-dimensional marginal of ν is $\mu \times \mu$. Since $\sum_{i=1}^{\infty} (\#C_i)^{-1} < \infty$ and $\mu = \lambda_{F_0} \times \lambda_{C_1} \times \lambda_{C_2} \times \cdots$, it follows from the Borel-Cantelli lemma that for ν -a.a. $(y_0, \ldots, y_l) \in X^{l+1}$,

$$
\exists N > 0
$$
 such that $y_{0,i} \neq y_{1,i} \neq \cdots \neq y_{l,i}$ whenever $i > N$,

where $y_{j,i} \in C_i$ is the *i*-th coordinate of $y_j \in F_0 \times C_1 \times C_2 \times \cdots$. Hence without loss of generality we may assume that this condition is satisfied for (x_0, \ldots, x_l) . Thus, if we set $t_{j,n} := f_{j,n} f_{0,n}^{-1} = f_{j,n-1} d_{j,n} d_{0,n}^{-1} f_{0,n-1}^{-1}$ then $t_{j,n}t_{i,n}^{-1} \notin F_{n-1}$ whenever $i \neq j$. Slightly modifying our reasoning in (I) and making use of (2.7) instead of (2.6) we now obtain

$$
\nu(B_0 \times \cdots \times B_l) = \lim_{n \to \infty} \sum_{g \in F_{n-1}} \chi_{B_0 \times \cdots \times B_l}(T_g x_0, \dots, T_g x_l)
$$

=
$$
\lim_{n \to \infty} \sum_{g \in F_{n-1}} \chi_{B_0 \times \cdots \times B_l}(T_g x_0, T_g T_{t_{1,n}} x_0, \dots, T_g T_{t_{l,n}} x_0)
$$

=
$$
\lim_{n \to \infty} \sum_{g \in F_{n-1}} \mu(T_g B_0 \cap T_{t_{1,n}}^{-1} T_g B_1 \cap \dots \cap T_{t_{l,n}}^{-1} T_g B_l)
$$

=
$$
\mu(B_0) \cdots \mu(B_l)
$$

for any $(l + 1)$ -tuple of cylinders B_0, \ldots, B_l . Hence $\nu = \mu \times \cdots \times \mu$.

Consider now the general case and put $t_{j,n} := f_{j,n} f_{i_n,n}^{-1}$ for each $j \in p, p \in P$. Recall that $i_p = \min_{j \in p} j$. Then

$$
\chi_{B_0\times\cdots\times B_l}(T_gx_0,\ldots,T_gx_l)=\prod_{p\in P}\chi_{A_p}(x_{i_p}),
$$

where $A_p := \bigcap_{j \in p} T_{t_{j,n}}^{-1} T_g^{-1} B_j$. Notice that the point $(x_{i_p})_{p \in P} \in X^{\{i_p\}} P \in P}$ is generic for $(T \times \cdots \times T(\#P \times F))$, where κ stands for the projection of ν onto $X^{\{i_p|p\in P\}}$. By the first part of (II), $\kappa = \mu \times \cdots \times \mu$ (#P times). Hence

$$
\nu(B_0 \times \cdots \times B_l) = \lim_{n \to \infty} \frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \chi_{B_0 \times \cdots \times B_l}(T_g x_0, \dots, T_g x_l)
$$

$$
= \lim_{n \to \infty} \frac{1}{\#F_{n-1}} \sum_{g \in F_{n-1}} \prod_{p \in P} \mu(A_p).
$$

As in (I), a 'stabilization' property holds: there exists $M > 0$ such that $t_{j,n} =$ $t_{j,M}$ for all $n > M$. We now set $g := (t_{0,M}^{-1}, \ldots, t_{l,M}^{-1})$. Clearly, g is P. subordinated. Hence

$$
\nu(B_0 \times \cdots \times B_l) = \frac{1}{\#F_M} \sum_{g \in F_M} \prod_{p \in P} \mu\bigg(\bigcap_{j \in p} T_g T_{t_{j,M}} T_g^{-1} B_j\bigg) = \mu_g \mathbf{1}(B_0 \times \cdots \times B_l).
$$

4. Uncountably many mixing actions with MSJ

In this section the proof of Theorems 0.1(i) and 0.4 will be completed. We first apply Lemma 2.3 to construct k_{n+1} and $s_n, \hat{s}_n \in F_n^{H_n}$ in such a way that (2.4) is satisfied for both s_n and \hat{s}_n and, in addition,

(4.1)
$$
\|\lim_{h \in H_n} (s_n(hk), \widehat{s}_n(hk')) - \lambda_{F_n} \times \lambda_{F_n}\| < \epsilon_n
$$

for all $k, k' \in H_n$. Next, given $\sigma \in \{0,1\}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we define $s_n^{\sigma}: H_n \to F_n$ by setting

$$
s_n^{\sigma} = \begin{cases} s_n & \text{if } \sigma(n) = 0, \\ \widehat{s}_n & \text{if } \sigma(n) = 1. \end{cases}
$$

Now we denote by T^{σ} the (C, F) -action of G associated with $(k_n, s_{n-1}^{\sigma})_{n=1}^{\infty}$. Let Σ be an uncountable subset of $\{0,1\}^{\mathbb{N}}$ such that for any $\sigma, \sigma' \in \Sigma$, the subset ${n \in \mathbb{N} \mid \sigma(n) \neq \sigma'(n)}$ is infinite.

THEOREM 4.1:

- (i) *For any* $\sigma \in \{0, 1\}^{\mathbb{N}}$, *the action* T^{σ} *is mixing and has MSJ.*
- (ii) If $\sigma, \sigma' \in \Sigma$ and $\sigma \neq \sigma'$ then T^{σ} and $T^{\sigma'}$ are disjoint.

Proof: (i) follows from the proof of Theorem 3.1, since (2.4) is satisfied for s_n^{σ} for all $\sigma \in \{0,1\}^{\mathbb{N}}$ and $n \in \mathbb{N}$.

(ii) Let $\nu \in J^e(T^{\sigma}, T^{\sigma'})$. Take a generic point (x, x') for $(T^{\sigma} \times T^{\sigma'}, \nu)$. Consider any *n* such that $\sigma(n) \neq \sigma'(n)$. Then we can write x and x' as infinite

sequences $x = (f_n, d_{n+1}, d_{n+2},...)$ and $x' = (f'_n, d'_{n+1}, d'_{n+2},...)$ with $f_n, f'_n \in$ F_n and $d_m, d'_m \in C_m$ for all $m > n$. Take any $g \in F_{n+1}$. Then we have the following expansions:

$$
g = a\phi_n(h)
$$
, $d_{n+1} = s_n^{\sigma}(h_n)\phi_n(h_n)$ and $d'_{n+1} = s_n^{\sigma'}(h'_n)\phi_n(h'_n)$

for some uniquely determined $a \in F_n$ and $h, h_n, h'_n \in H_n$. Since

$$
gf_n d_{n+1} = af_n s_n^{\sigma}(h_n) s_n^{\sigma}(hh_n)^{-1} c_{n+1}(hh_n)
$$
 and

$$
gf'_n d'_{n+1} = af'_n s_n^{\sigma'}(h'_n) s_n^{\sigma'}(hh'_n)^{-1} c_{n+1}(hh'_n),
$$

the following holds for any pair of subsets $A, A' \subset F_n$:

$$
\frac{\# \{ g \in F_{n+1} | (T_g^{\sigma} x, T_g^{\sigma'} x') \in [A]_n \times [A']_n \}}{\#F_{n+1}}\n= \frac{1}{\#F_n} \sum_{a \in F_n} \frac{\# \{ h \in H_n | af_n s_n^{\sigma}(h_n) s_n^{\sigma}(hh_n)^{-1} \in A, af_n^{\prime} s_n^{\sigma'}(h_n^{\prime}) s_n^{\sigma'}(hh_n^{\prime})^{-1} \in A' \}}{\#H_n}\n= \frac{1}{\#F_n} \sum_{a \in F_n} \xi_n (A^{-1} af_n s_n^{\sigma}(h_n) \times A^{\prime -1} af_n^{\prime} s_n^{\sigma'}(h_n^{\prime})),
$$

where $\xi_n := \text{dist}_{h \in H_n}(s_n^{\sigma}(hh_n), s_n^{\sigma'}(hh'_n))$. This and (4.1) yield

(4.2)
$$
\frac{\#\{g \in F_{n+1} | (T_g^{\sigma} x, T_g^{\sigma'} x') \in [A]_n \times [A']_n\}}{\#F_{n+1}} = \lambda_{F_n}(A) \lambda_{F_n}(A') \pm \epsilon_n
$$

$$
= \mu([A]_n)\mu([A']_n) \pm \epsilon_n.
$$

Since (x, x') is generic for $(T^{\sigma} \times T^{\sigma'}, \nu)$ and (4.2) holds for infinitely many n, we deduce that $\nu = \mu \times \mu$.

By refining the above argument the reader can strengthen Theorem $0.1(i)$ as follows: there exists an uncountable family of mixing (of any order) rank-one G-actions with MSJ such that any finite subfamily of it is disjoint.

5. On G-actions with MSJ

It follows immediately from Definition 0.2 that if T has MSJ_2 then the centralizer $C(T)$ of T is 'trivial', i.e. $C(T) = \{T_q | g \in C(G)\}$, where $C(G)$ denotes the center of G. Moreover, we will show that T has *trivial product centralizer (as* D. Rudolph did in [Ru] for Z-actions).

Let $(X^l, \mathfrak{B}^{\otimes l}, \mu^l, T^{(l)})$ denote the *l*-fold Cartesian product of $(X, \mathfrak{B}, \mu, T)$. Given a permutation σ of $\{1,\ldots,l\}$ and $g_1,\ldots,g_n\in C(T)$, we define a transformation $U_{\sigma,g_1,...,g_l}$ of $(X^l, \mathfrak{B}^{\otimes l}, \mu^l, T^{(l)})$ by setting

$$
U_{\sigma,g_1,\ldots,g_l}(x_1,\ldots,x_l):=(T_{g_1}x_{\sigma(1)},\ldots,T_{g_l}x_{\sigma(l)}).
$$

Of course, $U_{\sigma,q_1,...,q_l} \in C(T^{(l)})$. We show that for the actions with MSJ, the converse also holds.

PROPOSITION 5.1: If T has MSJ then, for any $l \in \mathbb{N}$, each element of $C(T^{(l)})$ *equals to* $U_{\sigma,q_1,\ldots,q_l}$ *for some permutation* σ *and elements* $g_1,\ldots,g_l \in C(G)$ *.*

Proof: Let $S \in C(T^{(l)})$. We define an ergodic 2-fold self-joining ν of $T^{(l)}$ by setting $\nu(A \times B) := \mu^l(A \cap S^{-1}B)$ for all $A, B \in \mathfrak{B}^{\otimes l}$. Notice that $\nu \in J_{2l}^e(T)$. Since T has MSJ_{2l} , there exists a partition P of $\{1,\ldots, 2l\}$ and a P-subordinated element $g = (g_1, \ldots, g_{2l}) \in \mathrm{FC}(G)^{2l}$ such that

(5.1)
$$
\nu(A_1 \times \cdots \times A_{2l}) = \frac{1}{\#g^{\bullet 2l}} \sum_{(h_1, ..., h_{2l}) \in g^{\bullet 2l}} \prod_{p \in P} \mu\left(\bigcap_{i \in p} T_{h_i} A_i\right)
$$

for all subsets $A_1, \ldots, A_{2l} \in \mathfrak{B}$. Substituting at first $A_1 = \cdots = A_l = X$ and then $A_{l+1} = \cdots = A_{2l} = X$ in (5.1), we derive that $\#P = l$, $\#p = 2$ for all $p \in P$ and $\#g^{\bullet 2l} = 1$. Hence $g_1, \ldots, g_{2l} \in C(G)$ and there exists a bijection σ of $\{1,\ldots,l\}$ such that $P = \{\{i,\sigma(i) + l\} | i = 1,\ldots,l\}$. Therefore it follows from (5.1) that

$$
S^{-1}(A_{l+1} \times \cdots \times A_{2l}) = T_{g_{l+1}} A_{l+\sigma(1)} \times \cdots \times T_{g_{2l}} A_{l+\sigma(l)}.
$$

As a simple corollary we derive that if T has MSJ then the G -actions $T, T^{(2)}, \ldots$ and $T \times T \times \cdots$ are pairwise non-isomorphic.

After this paper was submitted the author introduced a companion to MSJ concept of *near simplicity* for actions of locally compact second countable groups IDa3]. As appeared, this concept is more general than the simplicity in the sense of A. del Junco and D. Rudolph [JuR] even for Z-actions. For instance, there exist near simple transformations which are disjoint from all del Junco-Rudolph's simple ones. It is shown in [Da3] that an analogue of Veech's theorem on the structure of factors holds for this extended class of simple actions. In particular, if T has MSJ_2 , then for every non-trivial factor $\mathfrak F$ of T there exists a compact normal subgroup K of G such that

$$
\mathfrak{F} = \text{Fix}\, K := \{ A \in \mathfrak{B} | \ \mu(T_k A \triangle A) = 0 \text{ for all } k \in K \}.
$$

Thus if T has MSJ_2 then T is *effectively prime*, i.e. T has no effective factors. (Recall that a *G*-action *Q* is called effective if $Q_g \neq \text{Id}$ for each $g \neq 1_G$.)

References

- $[Ad]$ T. Adams, *Smorodinsky's conjecture on rank one systems,* Proceedings of the American Mathematical Society 126 (1998), 739-744.
- $[AdS]$ T. Adams and C. E. Silva, *Zd-staircase actions,* Ergodic Theory and Dynamical Systems 19 (1999), 837-850.
- [CrS] D. Creutz and C. E. Silva, *Mixing on a class of rank-one transformations,* Ergodic Theory and Dynamical Systems 24 (2004), 407-440.
- [Dall A. I. Danilenko, *Funny rank-one weak mixing for nonsingulax Abelian actions,* Israel Journal of Mathematics 121 (2001), 29-54.
- [Da2] A. I. Danilenko, *Infinite rank one actions and nonsingulax Chacon transformations,* Illinois Journal of Mathematics 48 (2004), 769-786.
- $[Da3]$ A. I. Danilenko, *On simplicity concepts for ergodic actions,* preprint.
- [DaS1] A. I. Danilenko and C. E. Silva, *Multiple and polynomial recurrence for Abelian actions in infinite* measure, Journal of the London Mathematical Society (2) 69 (2004), 183-200.
- [DaS2] A. I. Danilenko and C. E. Silva, *Mixing rank-one actions of locally compact Abelian groups,* preprint.
- **[Fa]** B. Fayad, *Rank one and mixing differentiable flows,* Inventiones Mathematicae 160 (2005), 305-340.
- $[J_u]$ A. del Junco, *A simple* map *with no prime factors,* Israel Journal of Mathematics 104 (1998), 301-320.
- **[JuR]** A. del Junco and D. Rudolph, *On ergodic actions whose self-joinings axe graphs,* Ergodic Theory and Dynamical Systems 7 (1987), 531-557.
- $|JuY|$ A. del Junco and R. Yassawi, *Multiple mixing* rank *one group actions,* Canadian Journal of Mathematics 52 (2000), 332-347.
- **[Ka]** S. A. Kalikow, *Twofold mixing implies threefold mixing for rank one transformations,* Ergodic Theory and Dynamical Systems 4 (1984), 237-259.
- $[Ki]$ J. L. King, *Joining-rank and the structure of finite rank mixing transformations, Journal d'Analyse Mathématique* 51 (1988), 182-227.
- **[Ma]** B. Madore, *Rank-one group actions with simple mixing Z-subactions,* New York Journal of Mathematics 10 (2004), 175-194.
- $[Or]$ D. S. Ornstein, *On* the *root problem in ergodic theory,* in *Proc. Sixth Berkley Syrup. Math. Stat. Prob. (Univ. California, Berkeley, Calif., 1970/1971),* Vol. II, University of California Press, Berkeley, Calif., 1972, pp. 347-356.
- $[Pr]$ A. Prikhodko, *Stochastic constructions of flows of rank one,* Matematicheskii Sbornik 192 (2001), 61-92.
- [Ru] D.J. Rudolph, An *example of a measure preserving* map *with minimal self*joinings, Journal d'Analyse Mathématique 35 (1979), 97-122.
- [Ry] V.V. Ryzhikov, *Mixing, rank and minimal self-joining of actions with invariant measure,* Matematicheskii Sbornik 183 (1992), 133-160.